3.1. Konvergenz

Bestimmen Sie das Konvergenzverhalten und gegebenenfalls den Grenzwert der folgenden Folgen $(a_n)_{n\in\mathbb{N}}$:

(a)
$$a_n = \frac{n^3 - \sqrt{n^5}}{n^2 + 1} + (-1)^n 10^{27}$$

(b)
$$a_n = \frac{n^3 + n^2}{n^2 + 1} - \frac{n^3 - n^2}{n^2 + 1}$$

(c)
$$a_n = \frac{n^{97} - n^{44}}{n^5 - n^2 + 2^n}$$

3.2. Arithmetisches Mittel

(a) Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge mit Grenzwert a. Beweisen Sie, dass die Folge der arithmetischen Mittel

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

ebenfalls gegen a konvergiert.

Hinweis: Die Idee ist, die Summe s_n in zwei Teile aufzuteilen:

$$s_n - a = \frac{1}{n} \sum_{k=1}^{N} (a_k - a) + \frac{1}{n} \sum_{k=N+1}^{n} (a_k - a).$$

Die Summe im ersten Term ist unabhängig von n und der zweite Term kann dank der Konvergenz von $(a_n)_{n\in\mathbb{N}}$ abgeschätzt werden.

(b) Geben Sie ein Beispiel einer nicht konvergierenden Folge, deren arithmetisches Mittel konvergiert.

3.3. Konvergenz von Reihen

Verwenden Sie das Quotientenkriterium oder das Wurzelkriterium, um die Konvergenz der folgenden Reihen nachzuweisen:

- (a) $\sum_{n=1}^{\infty} \frac{2^n x^n}{n^n}$ für alle reellen Zahlen x.
- (b) $\sum_{n=1}^{\infty} \frac{2^n}{1+2^n} x^n$ für alle reellen Zahlen x mit |x| < 1.
- (c) $\sum_{n=1}^{\infty} \frac{2^n}{n!} x^n$ für alle reellen Zahlen x.