Einige (Teil-)Aufgaben sind mit (*) markiert. Versuchen Sie, wenigstens diese Aufgaben zu lösen und abzugeben.

5.1. Limes superior und inferior Bestimmen Sie:

- (a) (*) $\limsup_{k\to\infty} (-1)^k \left(1+\frac{1}{k}\right)$
- **(b)** (*) $\liminf_{k\to\infty} (-1)^k \left(1+\frac{1}{k}\right)$
- (c) $\limsup_{k\to\infty} k(1+(-1)^k)$
- (d) $\liminf_{k\to\infty} k(1+(-1)^k)$

5.2. Konvergenz und bestimmte Divergenz einer Folge in \mathbb{R}^d

(a) Wir definieren die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R}^2 durch

$$a_n := \left(\frac{n+1}{2^{-n}}\right).$$

Zeigen Sie, dass diese Folge konvergiert und bestimmen Sie den Limes.

Tipp: Verwenden Sie einen Satz aus der Vorlesung über Konvergenz einer Folge in \mathbb{R}^d sowie die Konvergenz gewisser Folgen, die wir schon in der Vorlesung gezeigt haben.

(b) Zeigen Sie, dass die Folge $(\sqrt[n]{n})_{n\in\mathbb{N}}$ gegen 1 konvergiert!

Tipps: Sei $\varepsilon \in (0, \infty)$. Zeigen Sie das Folgende:

• Für jedes $n \in \mathbb{N}$ gilt

$$(1+\varepsilon)^n \ge \frac{n(n-1)}{2}\varepsilon^2.$$

Verwenden Sie hierfür einen Satz, den Sie aus dem Gymnasium kennen.

• Es gibt ein $n_0 \in \mathbb{N}_0$, sodass $\frac{n_0 - 1}{2} \varepsilon^2 \ge 1$.

Sei jetzt $n \in \mathbb{N}_0$, sodass $n \ge n_0$.

• Es gilt $(1+\varepsilon)^n \ge n$.

Zeigen Sie jetzt, dass $(\sqrt[n]{n})_{n\in\mathbb{N}_0} \to 1$, indem Sie die folgende Tatsache verwenden:

$$\forall x, y \in [0, \infty), n \in \mathbb{N} : x^n \ge y^n \Rightarrow x \ge y. \tag{1}$$

Zusatzaufgabe: Beweisen Sie (1). Sie dürfen dazu verwenden, dass \mathbb{R} ein (total) geordneter Körper ist, d. h. die Eigenschaften A.i)-iv), M.i)-iv), D), O.i)-iv), K.i),ii) in Abschnitt 2.2 im Skript von Prof. M. Struwe besitzt.

(c) (*) Zeigen Sie, dass die Folge $(\sqrt[n]{n!})_{n\in\mathbb{N}}$ bestimmt gegen ∞ divergiert.

Tipps:

• Zeigen Sie, dass für jedes $k \in \mathbb{N}$ gilt, dass

$$(2k)! > k^k$$
, $(2k+1)! > (k+1)^{k+1}$.

• Zeigen Sie damit, dass für jedes $n \in \mathbb{N}$ gilt, dass

$$\sqrt[n]{n!} \ge \sqrt{\frac{n}{2}}.$$

• Zeigen Sie damit, dass $(\sqrt[n]{n!})_{n\in\mathbb{N}}$ bestimmt gegen ∞ divergiert.

5.3. Konvergenz einer Reihe Zeigen Sie, dass die folgenden Reihen konvergieren:

(a) (*) die zur Folge
$$\left(\frac{(k!)^2}{(2k)!}\right)_{k\in\mathbb{N}_0}$$
 gehörige Reihe, also die Folge $\left(\sum_{k=0}^n\frac{(k!)^2}{(2k)!}\right)_{n\in\mathbb{N}_0}$

Tipp: Verwenden Sie das Quotientenkriterium.

(b) die zur Folge
$$\left(\frac{k!}{k^k}\right)_{k\in\mathbb{N}_0}$$
 gehörige Reihe

Tipp: Verwenden Sie das Quotientenkriterium.

(c) (*) die zur Folge $(k^p z^k)_{k \in \mathbb{N}_0}$ gehörige Reihe, wobei $z \in \mathbb{C}$, sodass |z| < 1, und $p \in \mathbb{N}$

Tipp: Verwenden Sie das Wurzelkriterium und Aufgabe 5.2(b)!

(d) die zur Folge
$$\left(a_k:=\frac{(-1)^k}{2k+1}\right)_{k\in\mathbb{N}_0}$$
 gehörige Reihe

Tipp: Verwenden Sie ein Konvergenz-Kriterium aus der Vorlesung.

5.4. Cauchy-Kriterium für Konvergenz einer Folge, harmonische Reihe divergiert, ζ -Reihe

(a) (*) Wir definieren die Folge $(x_k)_{k\in\mathbb{N}_0}$ durch

$$x_k := \begin{cases} 3^{-k}, & \text{falls } 4|k, \\ -3^{-k}, & \text{sonst.} \end{cases}$$

Zeigen Sie, dass die Folge

$$\left(a_n := \sum_{k=0}^n x_k\right)_{n \in \mathbb{N}_0}$$

konvergiert.

Tipp: Verwenden Sie das Cauchy-Kriterium.

- (b) Sei $(a_n)_{n\in\mathbb{N}_0}$ eine Folge in \mathbb{R}^d . Formulieren die Verneinung der Aussage, dass $(a_n)_{n\in\mathbb{N}_0}$ eine Cauchy-Folge ist, so um, dass darin keine Negation \neg mehr vorkommt. Verwenden Sie dazu Quantoren.
- (c) Zeigen Sie, dass die harmonische Reihe keine Cauchy-Folge ist.

Bemerkung: Wir haben uns das schon in der Vorlesung überlegt. Das Ziel dieser Aufgabe ist, diese Überlegungen zu präzisieren.

(d) Zeigen Sie, dass die harmonische Reihe divergiert.

Tipp: Verwenden Sie einen Satz aus der Vorlesung.

- (e) Wir definieren die ζ -Reihe für $s \in \mathbb{R}$ als die zur Folge $\left(a_k := \frac{1}{k^s}\right)_{k \in \mathbb{N}_0}$ gehörige Reihe, d. h. die Folge $\left(\sum_{k=1}^n \frac{1}{k^s}\right)_{n \in \mathbb{N}_0}$. Zeigen Sie, dass für jedes $s \in (-\infty, 1]$ die ζ -Reihe für s divergiert.
- **5.5.** Konvergenzradius einer Potenzreihe Berechnen Sie den zur Koeffizientenfolge $c=(c_k)_{k\in\mathbb{N}_0}$ gehörigen Konvergenzradius, d. h. den Konvergenzradius der Potenzreihe $z\mapsto\left(\sum_{k=0}^n c_k z^k\right)_{n\in\mathbb{N}_0}$ für $(c_k)_{k\in\mathbb{N}_0}$ gegeben durch
- (a) $c_k := 1$ (Das entspricht der Potenzreihe $z \mapsto \left(\sum_{k=0}^n z^k\right)_{n \in \mathbb{N}_0}$, also der geometrischen Reihe.)
- **(b) (*)** $c_k := \frac{1}{k^k}$

- (c) $c_k := \frac{k!}{k^k}$
- (d) $c_k := k^p \text{ für } p \in \mathbb{N}$

Tipp: Verwenden Sie Aufgabe 5.2(b)

(e) (*) $c_k := \frac{1}{k!}$ (Das entspricht der Potenzreihe $z \mapsto \left(\sum_{k=0}^n \frac{z^k}{k!}\right)_{n \in \mathbb{N}_0}$, also der Exponentialreihe.)

Tipp: Verwenden Sie Aufgabe 5.2(c).

- (f) Konvergiert die Folge $\left(\sum_{k=0}^{n} \frac{k!}{k^k}\right)_{n \in \mathbb{N}_0}$?
- (g) Gibt es ein $z \in \mathbb{C}$, sodass |z| > 1 und die geometrischen Reihe $\left(\sum_{k=0}^n z^k\right)_{n \in \mathbb{N}_0}$ konvergiert?
- (h) (*) Für welche $z \in \mathbb{C}$ konvergiert die Exponentialreihe $\left(\sum_{k=0}^{n} \frac{z^k}{k!}\right)_{n \in \mathbb{N}_0}$?

5.6. Online-MC

Abgabe der Multiple-Choice Aufgaben: Online auf Moodle.

Es sind jeweils mehrere Antworten möglich.

(a) Sei a_n definiert durch

$$a_n = \begin{cases} 1 + \sqrt{\frac{k}{12k+1}} & n = 3k+1 \text{ für } k \ge 0, \\ \frac{5k^3 + k}{k^3 + 1} & n = 3k+2 \text{ für } k \ge 0, \\ \frac{(-1)^k}{k} & n = 3k+3 \text{ für } k \ge 0. \end{cases}$$

Welche der Aussagen gilt?

- (i) $\lim_{n\to\infty} a_n$ existiert.
- (ii) $\liminf_{n\to\infty} a_n$ existiert.

(iii)
$$\limsup_{n\to\infty} a_n = 1 + \sqrt{1/12}$$

- (b) Sei $(a_k)_{k\in\mathbb{N}}$ eine reelle Folge. Dann ist die Folge $(b_n)_{n\in\mathbb{N}}$, wobei $b_n=\sup_{k\geq n}a_n$, monoton fallend und die Folge $(c_n)_{n\in\mathbb{N}}$, wobei $c_n=\inf_{k\geq n}a_n$, monoton wachsend.
 - (i) Wahr
 - (ii) Falsch
- (c) Die Harmonische Reihe $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ ist
 - (i) Konvergent
 - (ii) Divergent