Einige (Teil-)Aufgaben sind mit (*) markiert. Versuchen Sie, wenigstens diese Aufgaben zu lösen und abzugeben.

8.1. Exponentialfunktion streng monoton wachsend Zeigen Sie, dass die reelle Exponentialfunktion $\exp : \mathbb{R} \to \mathbb{R}$ streng monoton wachsend ist.

Tipps: Verwenden Sie:

- Additionstheorem für die Exponentialfunktion
- Für jedes $y \in (0, \infty)$ gilt $\exp(y) > 1$. (Warum?)

Die folgende Aufgabe ist ein Korollar in der Vorlesung (zum Additionstheorem für die Exponentialfunktion).

8.2. Produktregel für den Logarithmus Zeigen Sie, dass für alle $x,y\in(0,\infty)$ gilt, dass

$$\log(xy) = \log(x) + \log(y).$$

Tipp: Verwenden Sie das Additionstheorem für die Exponentialfunktion.

8.3. Umkehrfunktion eines eingeschränkten Polynoms ist stetig. Wir betrachten die Funktion

$$f: [1,2] \to \mathbb{R}, \qquad f(x) := x^5 - x.$$

Das Ziel dieser Aufgabe ist es, das Bild von f zu bestimmen und zu zeigen, dass die Umkehrfunktion der Funktion $f:[1,2] \to \operatorname{im}(f)$ stetig ist.

(a) Zeigen Sie, dass f streng monoton wachsend ist.

Tipps: Verwenden Sie, dass $x^5 - x = x(x^4 - 1)$.

- (b) Überlegen Sie sich, dass f injektiv ist.
- (c) Zeigen Sie, dass das Bild von f gleich [0,30] ist.

Tipp: Verwenden Sie die erste Teilaufgabe und einen Satz aus der Vorlesung.

(d) (*) Zeigen Sie, dass die Umkehrfunktion der Funktion $f:[1,2] \to [0,30]$ stetig ist.

Bemerkung: Da die Funktion $f:[1,2] \to [0,30]$ bijektiv ist, ist ihre Umkehrfunktion wohldefiniert.

Tipp: Verwenden Sie einen Satz aus der Vorlesung.

Bemerkung: Mit einer Formel meinen wir einen Ausdruck, der rationale Zahlen, die Variable x, die Grundrechenarten (Addition, Subtraktion, Multiplikation, Division) und k-te Wurzeln für beliebige $k \in \mathbb{N}$ enthält. Ein Beispiel dafür ist

$$\sqrt[5]{x^2 + \sqrt[3]{\frac{7}{2} - \frac{2}{x^4 + 1}}}$$

(Potenzen sind auch zugelassen, da wir zum Beispiel $x^2 = x \cdot x$ schreiben können.) Es gibt keine Formel für f^{-1} . Das folgt aus *Galoistheorie*, einem Teilgebiet der Algebra. Wir können also manchmal zeigen, dass eine bestimmte Funktion stetig ist (zum Beispiel die hier betrachtete Umkehrfunktion f^{-1}), selbst wenn es keine Formel für die Funktion gibt.

8.4. Umkehrfunktion der Einschränkung der komplexen Exponentialfunktion ist stetig Wir betrachten die eingeschränkte komplexe Exponentialfunktion

$$f := \text{Exp} := \exp : U := (0, \infty) \times (-\pi, \pi) \to \mathbb{C} = \mathbb{R}^2$$

 $x + iy \mapsto \exp(x + iy) \text{ für } (x, y) \in (0, \infty) \times (-\pi, \pi).$

Das Ziel dieser Aufgabe ist es, das Folgende zu zeigen:

- Das Bild von f ist offen.
- $f: U \to \operatorname{im}(f)$ besitzt eine Umkehrfunktion.
- Die Umkehrfunktion ist stetig.
- (a) Zeigen Sie, dass f injektiv ist.

Tipp: Verwenden Sie das Folgende:

- Additionstheorem for exp
- eulersche Formel
- Für jedes $\varphi \in \mathbb{R}$ impliziert $\operatorname{cis}(\varphi) = (1,0)$, dass es ein $k \in \mathbb{Z}$ gibt, sodass $\varphi = 2\pi k$.
- (b) Zeigen Sie, dass das Bild von f offen ist.
- (c) (*) Zeigen Sie, dass die Umkehrfunktion der Funktion $f: U \to \text{im}(f)$ stetig ist.

Bemerkung: Die Funktion $f: U \to \text{im}(f)$ ist surjektiv und daher gemäss der ersten Teilaufgabe bijektiv. Daher ist ihre Umkehrfunktion wohldefiniert.

Tipp: Verwenden Sie einen Satz aus der Vorlesung.

8.5. (*) punktweise Konvergenz Wir betrachten die Folge $(f_m)_{m\in\mathbb{N}_0}$ gegeben durch

$$f_m: [0,1] \to \mathbb{R}, \qquad f_m(x) := x^m.$$

Zeigen Sie, dass diese Folge punktweise gegen die folgende Funktion konvergiert:

$$f: [0,1] \to \mathbb{R}, \qquad f(x) := \left\{ \begin{array}{ll} 0, & \text{falls } x < 1, \\ 1, & \text{falls } x = 1. \end{array} \right.$$

8.6.gleichmässige Konvergenz, Potenzreihe für den Logarithmus, Riemannsche Zeta-Reihe

- (a) (*) Zeigen Sie, dass die Funktionenfolge $\left(f_m := \frac{\cos}{m} : \mathbb{R} \to \mathbb{R}\right)_{m \in \mathbb{N}}$ gleichmässig gegen die Funktion $f := 0 : \mathbb{R} \to \mathbb{R}$ konvergiert.
- (b) Zeigen Sie, dass für jedes $z \in B_1^2(0)$ die Folge $\left(\sum_{k=1}^m \frac{(-1)^{k-1}}{k} z^k\right)_{m \in \mathbb{N}}$ konvergiert.

Tipp: Verwenden Sie ein Resultat aus der Vorlesung.

(c) (*) Wir definieren

$$f: B_1^2(0) \subseteq \mathbb{C} \to \mathbb{C}, \qquad f(z) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} z^k := \lim_{m \to \infty} \sum_{k=1}^m \frac{(-1)^{k-1}}{k} z^k.$$

Zeigen Sie, dass f stetig ist.

Tipp: Verwenden Sie ein Resultat aus der Vorlesung.

Bemerkung: Die Einschränkung der Funktion f auf (-1,1) ist gegeben durch

$$f(x) = \log(1+x).$$

Das wird im Skript *Analysis für Informatik* von Prof. M. Struwe in Beispiel 6.3.1. bewiesen.

(d) Wir definieren die (*Riemannsche*) Zeta-Reihe als die Folge $(f_m)_{m\in\mathbb{N}}$ von Funktionen definiert durch

$$f_m: (1, \infty) \to \mathbb{R}, \qquad f_m(s) := \sum_{k=1}^m \frac{1}{k^s}.$$

Sei $s_0 \in (1, \infty)$. Zeigen Sie, dass die Einschränkung der Zeta-Reihe auf das Intervall $[s_0, \infty)$ gleichmässig konvergiert.

Tipp: Verwenden Sie, dass die Folge $\left(\sum_{k=1}^{m} \frac{1}{k^{s_0}}\right)_{m \in \mathbb{N}_0}$ nach oben beschränkt ist. Das wird im Skript *Analysis für Informatik* von Prof. M. Struwe in Beispiel 3.7.4. ii) bewiesen.

(e) Wir definieren die Riemannsche Zeta-Funktion $\zeta:(1,\infty)\to\mathbb{R}$ als den gleichmässigen Limes der Zeta-Reihe. Zeigen Sie, dass ζ stetig ist.

Tipp: Verwenden Sie, dass f_m für jedes m stetig ist, die letzte Teilaufgabe und einen Satz aus der Vorlesung.

8.7. Differenzierbarkeit, Ableitung, Summe konvergenter Funktionen

(a) (*) (quadratische Funktion differenzierbar) Seien $a, x_0 \in \mathbb{R}$. Wir definieren $f : \mathbb{R} \to \mathbb{R}$, $f(x) := ax^2$. Zeigen Sie, dass diese Funktion im Punkt x_0 differenzierbar ist mit Ableitung

$$f'(x_0) = 2ax_0.$$

(b) (Summe konvergenter Funktionen) Seien $n, p \in \mathbb{N}, X \subseteq \mathbb{R}^n, F, G : X \to \mathbb{R}^p$ und $x_0 \in \overline{X}$, sodass F und G an der Stelle x_0 konvergieren. Zeigen Sie, dass die Summe F + G gegen $\lim_{x \to x_0} F(x) + \lim_{x \to x_0} G(x)$ konvergiert.

Tipps:

- Sei $\varepsilon \in (0, \infty)$. Wir wählen eine Zahl α , welche die Rolle von δ in der Definition der Konvergenz von F an der Stelle x_0 spielt. Auf ähnliche Weise wählen wir ein β für G. Konstruieren Sie aus α und β ein δ , dass seinen Zweck für F + G und 2ε erfüllt. Passen Sie jetzt Ihre Wahl so an, dass δ seinen Zweck für F + G und ε erfüllt.
- Verwenden Sie die Dreiecksungleichung.
- (c) (Summe differenzierbarer Funktionen) Seien $p \in \mathbb{N}$, $U \subseteq \mathbb{R}$ offen, $f, g : U \to \mathbb{R}^p$ und $x_0 \in U$, sodass f und g an der Stelle x_0 differenzierbar sind. Zeigen Sie, dass die Summe f + g an der Stelle x_0 differenzierbar ist.

Tipp: Verwenden Sie die letzte Teilaufgabe.

(d) (*) (Differenzierbarkeit) Gibt es einen Punkt $x_0 \in \mathbb{R}$, in dem $\chi_{\mathbb{Q}} : \mathbb{R} \to \mathbb{R}$, die charakteristische Funktion der rationalen Zahlen, differenzierbar ist?

Tipp: Verwenden Sie einen Satz aus der Vorlesung.

8.8. Online-MC

Abgabe der Multiple-Choice Aufgaben: Online auf Moodle.

Es sind jeweils mehrere Antworten möglich.

- (a) Welche der folgenden Funktionen besitzen eine stetige Inverse?
 - (i) $f:[0,\pi] \to [0,1], \ f(x) = \sin(x)$
 - (ii) $f:[0,\frac{\pi}{2}] \to [0,1], \ f(x) = \sin(x)$
 - (iii) $f:[0,\frac{\pi}{2}] \to [-1,1], \ f(x) = \sin(x)$
 - (iv) $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1], \ f(x) = \sin(x)$