Serie 12

1. Aufgabe

(a) Zeigen Sie die Ungleichung

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} \, dx < \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

für $\alpha > 1$.

(b) Finden Sie mittels **a)** eine Abschätzung für den Grenzwert $S(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, sofern dieser existiert.

2. Aufgabe

Bestimmen Sie die Taylorreihe folgender Funktionen um den angegebenen Entwicklungspunkt x_0 .

(a)
$$f(x) = \sin(x)$$
, um $x_0 = 0$,

(b)
$$f(x) = \cos(x)$$
, um $x_0 = 0$,

(c)
$$f(x) = e^{-x}$$
, um $x_0 = 0$,

(d)
$$f(x) = \frac{1}{1-x}$$
, um $x_0 = 0$.

3. Aufgabe (Prüfung Winter 2022)

Wir geben zwei Koeffizienten der Taylorreihenentwicklung fünfter Ordnung der Funktion $f(x) = e^{-4x^2}$ an der Stelle $x_0 = 0$ an:

$$1 + c_1 x + c_2 x^2 + c_3 x^3 + 8x^4 + c_5 x^5.$$

Bestimmen Sie die fehlenden Koeffizienten c_1, c_2, c_3 und c_5 .

4. Aufgabe (Prüfung Winter 2019)

Sei

$$c_0 + c_1(x-1)$$

die Taylorreihenentwicklung erster Ordnung der Funktion $f(x) = e^x(x^3 - 1)$ an der Stelle $x_0 = 1$. Berechnen Sie c_0 und c_1 .

Abgabe: Vor Samstag, den 7. Dezember um 12 Uhr über SAMup.

HS 2024 1

Multiple Choice

Wichtig: Bei jeder Aufgabe ist genau eine Antwort richtig. Falls Sie die Lösung nicht wissen, raten Sie nicht und wählen Sie bei der Eingabe "Weiss ich nicht." So erhält Ihr/e Ubungsleiter/in eine bessere Rückmeldung.

1. Die Taylorreihenentwicklung zweiter Ordnung der Funktion $f(x) = e^{2x}$ an der Stelle $x_0 = 1$ ist gegeben durch

$$c_0 + c_1(x-1) + c_2(x-1)^2$$
.

Bestimmen Sie den Koeffizienten c_2 .

- (a) $c_2 = 4e^2$,
- (b) $c_2 = 2e$,
- (c) $c_2 = 2e^2$,
- (d) $c_2 = 4e$.
- **2.** Betrachten Sie die Taylorreihenentwicklung fünfter Ordnung der Funktion $f(x) = e^{x^2}$ um den Entwicklungspunkt $x_0 = 0$:

$$c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5.$$

Welche der folgenden Aussagen ist wahr?

- (a) $c_2 = -\frac{1}{2}$,
- (b) $c_3 = -1$,
- (c) $c_4 = \frac{1}{2}$,
- (d) $c_5 = -\frac{1}{2}$.
- 3. Bestimmen Sie den Konvergenzbereich der Reihe

$$\sum_{n=0}^{\infty} \left(-\frac{x-1}{5} \right)^n.$$

- (a) (-4,6),
- (b) [-4,6),
- (c) (-4, 6],
- (d) [-4, 6].

Abgabe: Vor Samstag, den 7. Dezember um 12 Uhr über Echo.

HS 2024 2