D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 4	HS 2021

4.1. Conservation laws and critical times Consider the PDE

$$u_y + \partial_x(f(u)) = 0.$$

In the following cases, compute the critical time y_c (i.e., the first time when the solution becomes nonsmooth):

- (a) $f(u) = \frac{1}{2}u^2$, the initial datum is $u(x, 0) = \sin(x)$.
- (b) $f(u) = \sin(u)$, the initial datum is $u(x, 0) = x^2$.
- (c) $f(u) = e^u$, the initial datum is $u(x, 0) = x^3$.

4.2. Weak solutions Consider the PDE

$$\partial_y u + \partial_x \left(\frac{u^4}{4}\right) = 0$$

in the region $x \in \mathbb{R}$ and y > 0.

- (a) Show that the function $u(x,y) := \sqrt[3]{\frac{x}{y}}$ is a classical solution of the PDE.
- (b) Show that the function

$$u(x,y) := \begin{cases} 0 & \text{if } x > 0, \\ \sqrt[3]{\frac{x}{y}} & \text{if } x \le 0. \end{cases}$$

is a *weak* solution of the PDE.