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1.1. Classification of PDEs Determine the order of the following PDEs. Deter-
mine also whether they are linear or not. If they are linear, determine if they are
homogeneous or not, and if they are not linear, determine if they are quasilinear.

(a) ∆(∆u) = 5u.

Fourth order. Linear. Homogeneous.

(b) 1020u+ sin(ux) = uxx

Second order. Not linear. Quasilinear.

(c) e∆u = u.

The PDE can be rewritten as ∆u = log(u). Second order. Not linear. Quasilinear.

(d) ∂x(uuy) = ∂y(uux).

Notice that ∂x(uuy) = uxuy + uuxy and ∂y(uux) = uyux + uuxy. So the PDE is always
true (at least for smooth functions) and should not be categorized as linear/not linear
or homogeneous/not homogenous.

1.2. Solutions to PDEs Check whether each of the following PDEs has a solution
u that is a polynomial and, if it exists, determine a polynomial that solves the PDE.

(a) ∆u = x+ y.

The polynomial u(x, y) = 1
6x

3 + 1
6y

3 solves the PDE.

(b) uxx = −u, with u(0) = 1.

The general solution of the ODE uxx = −u is u(x) = α sin(x) +β cos(x). Hence, since
u(0) = 1, it holds u(x) = α sin(x) + cos(x), which is not a polynomial for any choice
of α ∈ R.

(c) uxx + uxy = sin(x).

If u is a polynomial, then uxx + uxy is a polynomial. Therefore, since sin(x) is not a
polynomial, there is not a solution u which is a polynomial.

(d) u2
xyx + uyxy = eu.

If u is a polynomial then u2
xyx + uyxy is a polynomial. Hence, if u solves and is a

polynomial, then eu is a polynomial. But if u and eu are both polynomial then u
must be constant (think of the growth as x goes to infinity). Since u ≡ const is not a
solution of the PDE, there PDE does not have a polynomial solution.
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(e) uxx + uy + uxy = x2y.

The polynomial u(x, y) = 1
2x

2y2 − y3

3 − xy
2 + y2 solves the PDE.

1.3. Solutions to ODEs Solve the following ODEs.

(a) x′(t) + λx(t) = 0, with x(0) = x0.

We can express the ODE as

e−λt(x(t)eλt)′ = 0 ⇐⇒ (x(t)eλt)′ = 0.

Integrating, we reach that

x(t)eλt = C ⇐⇒ x(t) = Ce−λt.

Imposing x(0) = x0, we obtain C = x0, and thus

x(t) = x0e
−λt.

(b) x′(t) + λx(t) = 1, with x(0) = x0.

We can express the ODE as

e−λt(x(t)eλt)′ = 1 ⇐⇒ (x(t)eλt)′ = eλt.

Integrating, we reach that

x(t)eλt = 1
λ
eλt + C ⇐⇒ x(t) = 1

λ
+ Ce−λt.

Imposing x(0) = x0, we obtain C = x0 − 1
λ
, and thus

x(t) = 1
λ

+
(
x0 −

1
λ

)
e−λt.

(c) x′(t) + x(t) = t, with x(0) = 1. We can express the ODE as

e−t(x(t)et)′ = t ⇐⇒ (x(t)et)′ = tet.

Integrating (by parts), we reach that

x(t)et = et(t− 1) + C ⇐⇒ x(t) = t− 1 + Ce−t.

Imposing x(0) = 1, we obtain C = 2, and thus

x(t) = t− 1 + 2e−t.
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(d) x′(t) + x(t) = et, with x(0) = 1. We can express the ODE as

e−t(x(t)et)′ = et ⇐⇒ (x(t)et)′ = e2t.

Integrating , we reach that

x(t)et = 1
2e

2t + C ⇐⇒ x(t) = 1
2e

t + Ce−t.

Imposing x(0) = 1, we obtain C = 1
2 , and thus

x(t) = et + e−t

2 .

(e) x′′(t) + λ2x(t) = 0, find a general solution.

The characteristic polynomial is p(x) = x2 + λ2, with roots ±|λ|i. Thus, the general
solution is of the form

x(t) = C1e
i|λ|t + C2e

−i|λ|t,

for some constants C1 and C2. Alternatively, we can write

x(t) = B1 sin(λt) +B2 cos(λt),

for some constants B1 and B2.

1.4. Nonexistence of solutions Show that there is not a smooth function
u : R2 → R such thatux = xy ,

uy = x2 .

Assume that u is a solution of the given system of partial differential equations. Then
we have

uyx = ∂y(ux) = ∂y(xy) = x ,

uxy = ∂x(uy) = ∂x(x2) = 2x .

Since the two values are different, we have found a contradiction (as Schwarz’s theorem
states that for smooth function we can exchange the order of derivation) and this
proves that u cannot solve the system of equations.

1.5. Multiple Choice
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(a) The correct answer is Linear. In fact it suffices to notice that ∆v = ∆(eu) =∑n
i=1(eu)xixi

= ∑n
i=1(euuxi

)xi
= ∑n

i=1(euuxi
uxi

+ euuxixi
) = eu

(
∇u · ∇u + ∆u

)
= 0,

where the last identity holds because u solves ∇u · ∇u + ∆u = 0 by assumption.
Therefore, v solves ∆v = 0, which is linear. Alternatively, since ln(v) = u, one can
take advantage of the equation for u computing

0 = ∇u · ∇u+ ∆u = ∇(ln(v)) · ∇(ln(v)) + ∆(ln(v))

= 1
v2∇v · ∇v +

n∑
i=1

(ln(v))xixi
= 1
v2∇v · ∇v +

n∑
i=1

(vxi

v

)
xi

= 1
v2∇v · ∇v −

1
v2∇v · ∇v + ∆v

v
,

implying ∆v
v

= 0, and hence ∆v = 0.

(b) The correct answer is Quasi linear. The computation goes as follows

u = div(∇(u2)) = div(2u∇u) = 2
n∑
i=1

(uuxi
)xi

= 2
n∑
i=1

(uxi
uxi

+ uuxixi
) (1)

= 2(∇u · ∇u+ u∆u). (2)

As a side remark, notice that the general identity div(∇v) = ∆v holds for any C2

function v.
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