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4.1. Conservation laws and critical times Consider the PDE

uy + ∂x(f(u)) = 0 .

In the following cases, compute the critical time yc (i.e., the first time when the
solution becomes nonsmooth):

(a) f(u) = 1
2u2, the initial datum is u(x, 0) = sin(x).

The formula for the critical time is (if the internal infimum is negative)

yc = −
(

inf
x∈R

d

dx

(
f ′(u(x, 0))

))−1
.

Hence, we have
yc = −

(
inf
x∈R

cos(x)
)−1

= 1 .

(b) f(u) = sin(u), the initial datum is u(x, 0) = x2.

The formula for the critical time is (if the internal infimum is negative)

yc = −
(

inf
x∈R

d

dx

(
f ′(u(x, 0))

))−1
.

Hence, we have

yc = −
(

inf
x∈R

d

dx
cos(x2)

)−1
= −

(
inf
x∈R
−2x sin(x2)

)−1
= 0 ,

thus the solution is singular for any positive time.

(c) f(u) = eu, the initial datum is u(x, 0) = x3.

The formula for the critical time is (if the internal infimum is negative)

yc = −
(

inf
x∈R

d

dx

(
f ′(u(x, 0))

))−1
.

Hence, we have

yc = −
(

inf
x∈R

d

dx
ex3
)−1

= yc = −
(

inf
x∈R

3x2ex3
)−1

= −(0)−1 ,

since the internal infimum is nonnegative, we obtain that the solution remains smooth
for all positive times (that is equivalent to saying that characteristic lines do not
cross).
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4.2. Weak solutions Consider the PDE

∂yu + ∂x

(
u4

4

)
= 0

in the region x ∈ R and y > 0.

(a) Show that the function u(x, y) := 3
√

x
y
is a classical solution of the PDE.

Notice that ux = u
3x

and uy = −u
3y
. Thus we have

uy + ∂x

(
u4

4

)
= uy + uxu3 = uy + x

y
ux = −u

3y
+ x

y

u

3x
= 0 .

(b) Show that the function

u(x, y) :=

0 if x > 0,
3
√

x
y

if x ≤ 0.

is a weak solution of the PDE.

First of all, notice tha the function u is continuous.

Let us recall that a function u is a weak solution if for any x0 < x1 and any 0 < y0 < y1,
it holds∫ x1

x0
u(x, y1)− u(x, y0) +

∫ y1

y0
f(u(x1, y))− f(u(x0, y)) = 0 . (1)

Since a classical solution is also a weak solution (check the last exercise of Serie 4
of the old exercises – you may find them on the website), thanks to what we have
shown in part (a), we already know that if x0 < x1 ≤ 0, then (1) holds. Since
also the constant 0 is a classical solution of the PDE, we have that (1) holds also if
0 ≤ x0 < x1.

It remains to prove the validity of (1) when x0 < 0 < x1. Thanks to what we have
said above, we already know that (respectively setting x1 = 0 and x0 = 0)∫ 0

x0
u(x, y1)− u(x, y0) +

∫ y1

y0
f(u(0, y))− f(u(x0, y)) = 0 ,∫ x1

0
u(x, y1)− u(x, y0) +

∫ y1

y0
f(u(x1, y))− f(u(0, y)) = 0 .

Summing the two latter identities, we obtain exactly (1) for x0 < 0 < x1.
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