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6.1. Wave equation

Let c > 0, and consider the wave equation posed for −∞ < x <∞ and t > 0,
utt − c2uxx = 0, (x, t) ∈ R× (0,∞),

u(x, 0) = sin(x), x ∈ R,
ut(x, 0) = 0, x ∈ R.

(a) Solve the Cauchy problem. Identify the forward and the backward wave, and
express the solution with separated variables, that is, u(x, t) = v(x)w(t) for some
functions v and w. (Hint: Recall that sin(α± β) = sin(α) cos(β)± sin(β) cos(α).)

Sol. We use d’Alembert’s formula. That is,

u(x, t) = sin(x+ ct) + sin(x− ct)
2 .

The forward wave is then sin(x−ct)
2 and the backward wave is sin(x+ct)

2 .

Now, from the hint we deduce that sin(α + β) + sin(α− β) = 2 sin(α) cos(β), so that
our solution is

u(x, t) = sin(x) cos(ct).

(b) Show that u is 2π
c
-periodic in the t variable. That is, show that u(x, t) = u(x, t+T )

where T = 2π
c
.

Sol. This can be immediately seen from any of the both expressions of u, since both
sin and cos are 2π-periodic. For example, using that cos is 2π-periodic,

u(x, t+ T ) = sin(x) cos(ct+ 2π) = sin(x) cos(ct) = u(x, t),

where we recall that T = 2π
c
.

6.2. Odd initial data

Consider the general wave equation posed for −∞ < x <∞ and t > 0,
utt − c2uxx = 0, (x, t) ∈ R× (0,∞),

u(x, 0) = f(x), x ∈ R,
ut(x, 0) = g(x), x ∈ R.

Suppose that both f and g are odd functions (that is, f(−x) = −f(x) and g(−x) =
−g(x) for all x ∈ R). Show that the solution u is also an odd function in x, for each
time t > 0 (that is, u(−x, t) = −u(x, t) for all x ∈ R and t > 0).
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Sol. By d’Alembert’s formula

u(x, t) = f(x+ ct) + f(x− ct)
2 + 1

2c

∫ x+ct

x−ct
g(s) ds.

That is,
u(−x, t) = f(−x+ ct) + f(−x− ct)

2 + 1
2c

∫ −x+ct

−x−ct
g(s) ds.

Let us study each part separately. On the one hand, notice that, since f is odd,
f(−x+ ct) = −f(x− ct) and f(−x− ct) = −f(x+ ct), so

f(−x+ ct) + f(−x− ct)
2 = −f(x− ct)− f(x+ ct)

2 = −f(x+ ct) + f(x− ct)
2 .

On the other hand, we deal with the integral term. We change variables, s 7→ −ξ,
so that ds 7→ −dξ and if s goes from −x− ct to −x+ ct then ξ goes from x+ ct to
x− ct. That is,∫ −x+ct

−x−ct
g(s) ds = −

∫ x−ct

x+ct
g(−ξ) dξ =

∫ x+ct

x−ct
g(−ξ) dξ = −

∫ x+ct

x−ct
g(ξ) dξ,

where in the last equality we are using that g is odd. Putting everything together,

u(−x, t) = f(−x+ ct) + f(−x− ct)
2 + 1

2c

∫ −x+ct

−x−ct
g(s) ds

= −f(x+ ct) + f(x− ct)
2 − 1

2c

∫ x+ct

x−ct
g(ξ) dξ

= −u(x, t),

as we wanted to see.

6.3. Zero boundary condition

Use the previous exercise to solve the following Cauchy problem posed for x > 0 and
t > 0, with zero boundary condition at x = 0,

utt − uxx = 0, (x, t) ∈ (0,∞)× (0,∞),
u(0, t) = 0, t ∈ (0,∞),
u(x, 0) = x2, x ∈ (0,∞),
ut(x, 0) = 0, x ∈ (0,∞).

Sol. Notice that our problem is now posed on the half-line, x > 0, with zero boundary
condition at x = 0 for all times t > 0. The initial value is x2, which when evaluated
at 0 is consistent with the boundary condition.
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The previous exercise tells us that solutions starting from an odd initial value, remain
odd at all times. In particular, we know that continuous odd functions must be 0
at 0: that is, if f(−x) = −f(x) for all x, then for x = 0 we get f(0) = −f(0) which
means f(0) = 0. Then, the zero boundary condition at all times posed at x = 0 will
hold if the solution is odd at all times. Thus, thanks to the previous exercise, it will
be enough to solve the problem in the whole line

utt − uxx = 0, (x, t) ∈ R× (0,∞),
u(x, 0) = f(x), x ∈ R,
ut(x, 0) = 0, x ∈ R,

where f(x) = x2 if x > 0 and f(x) = −x2 if x ≤ 0, is the odd extension of x2 to the
whole R. Alternatively, we can write f(x) = x|x|. Thus, our solution, by d’Alembert
formula (which works only if the domain is the whole real line R), is given by

u(x, t) = f(x+ t) + f(x− t)
2 = (x+ t)|x+ t|+ (x− t)|x− t|

2 .

More explicitly, we can separate in three different cases:

• If x ≥ t, then x+ t ≥ 0 and x− t ≥ 0, so that

u(x, t) = (x+ t)2 + (x− t)2

2 = x2 + t2.

• If −t < x < t, then x− t < 0 and x+ t > 0, so that

u(x, t) = (x+ t)2 − (x− t)2

2 = 2xt.

• If x ≤ −t, then x+ t ≤ 0 and x− t ≤ 0, so that

u(x, t) = −(x+ t)2 + (x− t)2

2 = −x2 − t2.

By construction, it is clear that the function u restricted to {x ≥ 0} solves the PDE
on the half line as wished.

6.4. Time reversible

Consider the Cauchy problem posed for −∞ < x <∞ and t > 0,
utt − c2uxx = 0, (x, t) ∈ R× (0,∞),

u(x, 0) = f(x), x ∈ R,
ut(x, 0) = g(x), x ∈ R.
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Let ũ(x, t) := u(x,−t). Show that ũ(x, t) solves the Cauchy problem posed for
−∞ < x <∞ and t < 0,

ũtt − c2ũxx = 0, (x, t) ∈ R× (−∞, 0),
ũ(x, 0) = f(x), x ∈ R,
ũt(x, 0) = −g(x), x ∈ R.

That is, we are showing that the wave equation is reversible in time. If a function
solves a wave equation, the same function with time reversed also solves a the wave
equation with the same initial condition and opposite initial velocity.

Sol. We just need to check the properties one by one.

First notice that
ũ(x, 0) = u(x, 0) = f(x)

and
ũt(x, 0) = d

dt
(u(x,−t))

∣∣∣
t=0

= −ut(x, 0) = −g(x),

so that the initial conditions hold. Now, since u is defined for (x, t) ∈ R × (0,∞),
then ũ is defined for (x, t) ∈ R× (−∞, 0). Finally, notice that

ũtt(x, t) = (u(x,−t))tt = −(ut(x,−t))t = utt(x,−t)

and similarly
ũxx(x, t) = (u(x,−t))xx = uxx(x,−t).

Therefore,
ũtt(x, t)− c2ũxx(x, t) = utt(x,−t)− c2uxx(x,−t) = 0

where we are using the original equation, utt − c2uxx = 0.

6.5. Multiple Choice Determine the correct answer.

(a) Consider the one dimensional wave equation given by
utt − c2uxx = 0,
u(x, 0) = arctan(x), x ∈ R,
ut(x, 0) = 0, x ∈ R.

Then, the asymptotic value of the solution at any x̄ ∈ R (i.e. limt→+∞ u(x̄, t)) is equal
to

� 0

� π/2
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� π/2c

Sol. It suffices to take the limit as t→ +∞ in d’Alembert’s formula for a fixed point
in space x̄ ∈ R:

lim
t→+∞

arctan(x̄+ ct) + arctan(x̄− ct)
2 + 1

2c

∫ x̄+ct

x̄−ct
0 dy = 1

2

(
π

2 −
π

2

)
= 0.

The correct answer is the first one.

(b) Given
utt − π2uxx = 0,
u(x, 0) = x2, x ∈ R,
ut(x, 0) = − sin(x), x ∈ R.

the value of u at the point (x, t) = (π, 2) is equal to

� 0

� 5π2

� 3π2

Sol. Once again, we apply d’Alembert’s formula

u(π, 2) = (π + 2π)2 − (π − 2π)2

2 − 1
2π

∫ π+2π

π−2π
sin(y) dy

= 2π2 + 8π2

2 + 1
2π (cos(3π)− cos(−π)) = 5π2.

The correct answer is the second one.
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