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7.1. Nonhomogeneous wave equation Solve the following initial value problem:
utt − uxx = 1, (x, t) ∈ R× (0,∞),
u(x, 0) = 1, x ∈ R,
ut(x, 0) = 1, x ∈ R .

Let us apply d’Alembert’s formula for the nonhomogeneous wave equation:

u(x, t) = 1
2(1 + 1) + 1

2

∫ x+t

x−t
1 ds+ 1

2

∫ t

0

∫ x+t−τ

x−t+τ
1 ds dτ = 1 + t+ t2

2 .

7.2. Strange wave equation Show that the following partial differential equation
admits a solution 

utt − uxx = u2
t−u2

x

2u , (x, t) ∈ R× (0,∞),
u(x, 0) = x4, x ∈ R,
ut(x, 0) = 0, x ∈ R .

Hint: Consider the function v(x, t) =
√
u(x, t). What equation does it satisfy?

We assume that u is a solution of the PDE and we compute the derivatives of
v(x, t) :=

√
u(x, t). We have

vt = 1
2u
− 1

2ut ,

vtt = −1
4 u−

3
2u2

t + 1
2u
− 1

2utt ,

vx = 1
2u
− 1

2ux ,

vxx = −1
4 u−

3
2u2

x + 1
2u
− 1

2uxx .

Thus, we obtain

vtt − vxx = −1
4 u−

3
2u2

t + 1
2u
− 1

2utt + 1
4u
− 3

2u2
x −

1
2u
− 1

2uxx

= 1
2u
− 1

2 (utt − uxx)−
1
4u
− 3

2 (u2
t − u2

x)

= 1
4u
− 3

2 (u2
t − u2

x)−
1
4u
− 3

2 (u2
t − u2

x) = 0 .
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Hence we have proven that v satisfies
vtt − vxx = 0, (x, t) ∈ R× (0,∞),
v(x, 0) = x2, x ∈ R,
vt(x, 0) = 0, x ∈ R .

(1)

Up to now, we have just noticed that if u is a solution of the original PDE then
√
u

solves the wave equation; but we have never shown the existence of u. In order to do
so, let v(x, t) be the solution of (1) and define u := v2 (our computations justify this
choice). We want to check that u is a solution of the original PDE.

Thanks to the d’Alembert’s formula we know

v(x, t) = x2 + t2

and therefore
u(x, t) = x4 + t4 + 2x2t2

is our candidate solution. Checking the initial conditions u(x, 0) = x4 and ut(x, 0) = 0
is immediate. Hence, we just have to check whether u solves the equation. We have

utt − uxx = 12t2 + 4x2 − (12x2 + 4t2) = 8(t2 − x2) ,
ut = 4t3 + 4x2t = 4t(x2 + t2) =⇒ u2

t = 16t2u ,
ux = 4x3 + 4tx2 = 4x(x2 + t2) =⇒ u2

x = 16x2u .

Therefore we get

utt − uxx = 8(t2 − x2) = 16t2u− 16x2u

2u = u2
t − u2

x

2u

which is exactly the desired partial differential equation. Thus we have shown that
u(x, t) = x4 + t4 + 2x2t2 is a solution.

7.3. Symmetries Let u : R× [0,∞)→ R be a solution of the wave equation
utt − c2uxx = F (x, t), (x, t) ∈ R× (0,∞),

u(x, 0) = f(x), x ∈ R,
ut(x, 0) = g(x), x ∈ R .

(2)

By means of the uniqueness of the solution of the wave equation, show that
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(a) If f , g, and F are spatially odd (odd with respect to x), then u is also spatially
odd. (That is, f(−x) = −f(x), g(−x) = −g(x) and F (−x, t) = −F (x, t) imply
u(−x, t) = −u(x, t).)

Hint: Consider the function v(x, t) = −u(−x, t). What equation does it satisfy?

We proceed with the hint. Take v(x, t). Notice that vt(x, t) = −ut(−x, t), vtt(x, t) =
−utt(−x, t) on the one hand, and vx(x, t) = ux(−x, t), and vxx(x, t) = −uxx(−x, t).
Thus,

vtt(x, t)− c2vxx(x, t) = −utt(−x, t) + c2uxx(−x, t) = −F (−x, t) = F (x, t),

where in the last equality we are using that F is spatially odd. Similarly,

v(x, 0) = −u(−x, 0) = −f(−x) = f(x), vt(x, 0) = −ut(−x, 0) = −g(−x) = g(x).

Thus, v satisfies 
vtt − c2vxx = F (x, t), (x, t) ∈ R× (0,∞),

v(x, 0) = f(x), x ∈ R,
vt(x, 0) = g(x), x ∈ R,

that is, v and u satisfy the same problem, (2). Since (2) has a unique solution, we
must have v(x, t) = u(x, t) for all x ∈ R, t ≥ 0; that is, −u(−x, t) = u(x, t), u is
spatially odd.

(b) If f , g, and F are spatially even (even with respect to x), then u is also
spatially even. (That is, f(−x) = f(x), g(−x) = g(x) and F (−x, t) = F (x, t)
imply u(−x, t) = u(x, t).)

The solution is the same as above, taking v(x, t) = u(−x, t) instead.

(c) If f , g, and F are L-periodic, then u is also L-periodic. (That is, f(x) = f(x+L),
g(x) = g(x+ L) and F (x, t) = F (x+ L, t), imply u(x, t) = u(x+ L, t).)

The solution is the same as above, taking v(x, t) = u(x+ L, t) instead.

7.4. Wave equation on a ring Let u : [0, 1] × [0,∞) → R be a solution of the
wave equation 

utt − uxx = 0, (x, t) ∈ [0, 1]× (0,∞),
u(x, 0) = x− x2, x ∈ [0, 1],
ut(x, 0) = 0, x ∈ [0, 1] ,
u(0, t) = u(1, t), t ∈ (0,∞) ,
ux(0, t) = ux(1, t), t ∈ (0,∞) .
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Compute u(1
2 , 2021).

A general consideration: Up to now, the only tool we have to explicitly compute
u is the d’Alembert formula, which can be applied only when the PDE takes place on
the whole real line R. In general one can be interested in solving a wave equation
taking place in a smaller domain D ⊂ R. The trick is the following: we extend the
boundary data of the PDE on the whole line producing an auxiliary problem that we
can solve with d’Alembert. Then, we restrict the computed solution on D, and we
check taking advantage of Exercise 7.3 that the restriction solves the original PDE.
The way the extension should be operated is suggested by the additional boundary
conditions of the problem. For instance, exercise 6.3 was solved in this way. This
exercise is another example of this general method.

In this particular case we want to solve the wave equation on [0, 1], and we search for
a PDE on the whole line of the form

vtt − vxx = 0, (x, t) ∈ R× (0,∞),
v(x, 0) = v0(x), x ∈ R,
vt(x, 0) = 0, x ∈ R ,

(3)

such that setting u(x, t) := v(x, t) for (x, t) ∈ [0, 1] × (0,∞), u solves the original
problem. The question now is how v0 should be defined. Of course v0(x, t) = x− x2

for x ∈ [0, 1] since we want that v |[0,1]= u. The additional boundary conditions
u(0, t) = u(1, t) and ux(0, t) = ux(1, t) are imposing the solution to be periodic. The
natural way to define v0 is therefore by periodicity: v0(x) = (x− bxc)− (x− bxc)2,
where bxc = max{n ∈ Z : 0 ≤ x − n < 1}. This is just a fancy notation for the
natural periodic extension showed in the picture below

x− x2 on [0, 1] v0(x) on R

periodic extension

We know that the solution exists and is periodic (with period 1) as shown in (c)
of the previous exercise. Let u be the restriction of v in the domain [0, 1]× [0,∞).
Clearly u satisfies the wave equation in the domain and u(x, 0) = v(x, 0) = x − x2

and ut(x, 0) = vt(x, 0) = 0. Moreover, thanks to the periodicity of v, we have

u(0, t) = v(0, t) = v(1, t) = u(1, t) ,
ux(0, t) = vx(0, t) = vx(1, t) = ux(1, t) .
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Thus the function u satisfies the PDE given in the statement. With a similar argument
one can also prove that this u is the unique solution (the idea is to define v as the
extension of u and show that it satisfies (3), so that we can invoke the uniqueness for
the classical wave equation).

To compute the value of u(1
2 , 2021) we exploit the d’Alembert formula for v:

u(1
2 , 2021) = v(1

2 , 2021) = 1
2(v0(1

2 − 2021) + v0(1
2 + 2021)) = v0(1

2) = 1
4 .

7.5. Multiple Choice Determine the correct answer.

(a) Consider the modified one dimensional wave equation of Problem 6.5 with
nonhomogeneous right hand side

utt − c2uxx = F (t),
u(x, 0) = arctan(x), x ∈ R,
ut(x, 0) = 0, x ∈ R.

Suppose also that there exists a function m = m(t) ∈ C2 such that mtt = F and
m(0) = mt(0) = 0. Then, without applying directly the d’Alembert formula (but
possibly using Problem 6.5), the asymptotic value of u as t→∞ , i.e. limt→+∞ u(x̄, t),
is well defined and finite for all x̄ ∈ R

� always because it is equal to 0.

� if limt→+∞m(t) exists and it is finite.

� if limt→+∞m
′(t) exists and it is finite.

Let w be the solution of the homogeneous problem
wtt − c2wxx = 0,
w(x, 0) = arctan(x), x ∈ R,
wt(x, 0) = 0, x ∈ R.

Then, it is immediate (by direct computation or superposition principle) to see that
u := w + m solves the nonhomogeneous problem with F as right hand side. We
already know from Problem 6.5 that w has asymptotic value equal to zero. Therefore,
the correct solution is the second one since

lim
t→+∞

u(x̄, t) = lim
t→+∞

(
w(x̄, t) +m(t)

)
= lim

t→+∞
m(t).
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