

9.1. Separation of variables for non-homogeneous problems

Solve the following equations using the method of separation of variables and superposition principle. If the boundary conditions are non-homogeneous, find a suitable function satisfying the boundary conditions, and subtract it from the solution.

(a)

$$
\begin{cases}\n u_t - u_{xx} = t + 2\cos(2x), & (x, t) \in (0, \pi/2) \times (0, \infty), \\
 u_x(0, t) = 0, & t \in (0, \infty), \\
 u_x(\pi/2, t) = 0, & t \in (0, \infty), \\
 u(x, 0) = 1 + 2\cos(6x), & x \in [0, \pi/2].\n\end{cases}
$$

Sol. In Lecture 9 we have seen that the solution of the inhomogeneous problem can be obtained by applying the method of separation of variables, that is writing

$$
u(x,t) = \sum_{n\geq 0} T_n(t)X_n(x),
$$

where the ODE solved by $X_n(x)$ and $T_n(t)$ are determined by the homogeneous problem (i.e. setting 0 to the right hand side of the PDE). We already know that the function $v(x,t) = X(x)T(t)$ solves the homogeneous problem $v_t - v_{xx} = 0$ if $\frac{X''(x)}{X(x)} = \frac{T'(t)}{T(t)} = \lambda$ = constant, which implies as usual that

• If
$$
\lambda > 0
$$
,

$$
X(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x).
$$

• If $\lambda = 0$,

 $X(x) = A + Bx$.

• If $\lambda < 0$, $X(x) = A \cosh(\sqrt{-\lambda}x) + B \sinh(\sqrt{-\lambda}x)$.

Imposing the initial conditions $v_x(0,t) = v_x(\pi/2,t) = 0$ is equivalent to ask $X'(0) =$ $X'(\pi/2) = 0$. This implies directly that $A = B = 0$ if $\lambda < 0$, and $B = 0$ if $\lambda = 0$. If $\lambda > 0$ we get that $B = 0$, and $\cos(\sqrt{\lambda} \pi/2) = 0$, that is, $\lambda_n = 4n^2$ is the set of possible values for λ (including $n = 0$ to account for the constant arising from $\lambda = 0$). Thus, the corresponding solutions are $X_n(x) = \cos(2nx)$, and we are looking for a general solution of the form

$$
u(x,t) = \sum_{n\geq 0} T_n(t) \cos(2nx)
$$

for some functions $T_n(t)$ to be determined. From the initial condition, we directly get that

$$
T_0(0) = 1
$$
, $T_3(0) = 2$, $T_n(0) = 0$, for all $n \notin \{0, 3\}$.

November 22, 2021 $1/6$ $1/6$

On the other hand, imposing that $u_t - u_{xx} = t + 2\cos(2x)$ we get

$$
\sum_{n\geq 0} (T'_n(t) + 4n^2 T_n(t)) \cos(2nx) = t + 2\cos(2x).
$$

That is,

$$
T'_0(t) = t
$$
, $T'_1(t) + 4T_1(t) = 2$, $T'_n(t) + 4n^2(t) = 0$, for all $n \ge 2$.

We have various ODE with the corresponding initial conditions to be solved for each *Tn*:

 $(n = 0)$ In this case,

$$
T'_0(t) = t
$$
, $T_0(0) = 1$, \Rightarrow $T_0(t) = 1 + \frac{1}{2}t^2$.

 $(n = 1)$ In this case,

$$
T'_1(t) + 4T_1(t) = 2
$$
, $T_1(0) = 0$, \Rightarrow $T_1(t) = \frac{1}{2} - \frac{1}{2}e^{-4t}$.

(To solve the ODE, we notice that the solution to the homogeneous ODE is Ce^{-4t} , and that a particular solution is simply the constant $\frac{1}{2}$. By adding them up, and choosing *C* such that the initial condition holds, we get our solution.)

 $(n=3)$ In this case,

$$
T'_3(t) + 36T_3(t) = 0
$$
, $T_3(0) = 2$, \Rightarrow $T_3(t) = 2e^{-36t}$.

 $(n \notin \{0,1,3\})$ In this case,

$$
T'_n(t) + 4n^2 T_n(t) = 0
$$
, $T_n(0) = 0$, \Rightarrow $T_n(t) = 0$.

Thus, the general solution is given by

$$
u(x,t) = 1 + \frac{1}{2}t^2 + \frac{1}{2}(1 - e^{-4t})\cos(2x) + 2e^{-36t}\cos(6x).
$$

(b)

$$
\begin{cases}\nu_t - u_{xx} = 1 + x \cos(t), & (x, t) \in (0, 1) \times (0, \infty), \\
u_x(0, t) = \sin(t), & t \in (0, \infty), \\
u_x(1, t) = \sin(t), & t \in (0, \infty), \\
u(x, 0) = 1 + \cos(2\pi x), & x \in [0, 1].\n\end{cases}
$$

2/[6](#page-5-0) November 22, 2021

Hint: The function $w(x, t) = x \sin(t)$ fulfills the boundary conditions from above.

Sol. The first thing to notice is that the boundary conditions are now non-homogeneous. Thus, we have to find a new function $w(x, t)$ satisfying such non-homogeneous boundary conditions, and study the problem being satisfied by $v(x,t) = u(x,t) - w(x,t)$.

In this case, from the hint $w(x,t) = x \sin(t)$ satisfies the boundary conditions for *t* ≥ 0. Let us write the problem satisfied by $v(x,t) = u(x,t) - x \sin(t)$:

$$
\begin{cases}\nv_t - v_{xx} = 1, & (x, t) \in (0, 1) \times (0, \infty), \\
v_x(0, t) = 0, & t \in (0, \infty), \\
v_x(1, t) = 0, & t \in (0, \infty), \\
v(x, 0) = 1 + \cos(2\pi x), & x \in [0, 1].\n\end{cases}
$$

Solving the associated ODE problem coming from the separation of variables and imposing the boundary conditions as before, we get that the possible values of λ (the constant realising $\frac{X''}{X} = \frac{T'}{T} = \lambda$) are given by $\pi^2 n^2$ for $n \in \{0, 1, 2, \dots\}$, and the associated solutions are $X_n(x) = \cos(n\pi x)$. Thus, we are looking for a general solution of the form

$$
v(x,t) = \sum_{n\geq 0} T_n(t) \cos(n\pi x).
$$

From the initial condition, we directly get that

$$
T_0(0) = 1
$$
, $T_2(0) = 1$, $T_n(0) = 0$, for all $n \notin \{0, 2\}$.

On the other hand, imposing that $v_t - v_{xx} = 1$ we get

$$
\sum_{n\geq 0} (T'_n(t) + \pi^2 n^2 T_n(t)) \cos(n\pi x) = 1.
$$

That is,

$$
T'_0(t) = 1
$$
, $T'_n(t) + \pi^2 n^2 T_n(t) = 0$, for all $n \ge 1$,

And we can solve the various ODE for each *Tn*:

 $(n = 0)$ In this case,

$$
T'_0(t) = 1
$$
, $T_0(0) = 1$, \Rightarrow $T_0(t) = 1 + t$.

 $(n=2)$ In this case,

$$
T'_2(t) + 4\pi^2 T_2(t) = 0
$$
, $T_2(0) = 1$, \Rightarrow $T_2(t) = e^{-4\pi^2 t}$.

 $(n \notin \{0,2\})$ In this case,

$$
T'_n(t) + \pi^2 n^2 T_n(t) = 0
$$
, $T_n(0) = 0$, \Rightarrow $T_n(t) = 0$.

November 22, 2021 $3/6$ $3/6$

Thus,

$$
v(x,t) = 1 + t + e^{-4\pi^2 t} \cos(2\pi x),
$$

and, therefore,

$$
u(x,t) = v(x,t) + w(x,t) = 1 + t + e^{-4\pi^2 t} \cos(2\pi x) + x \sin(t).
$$

(c) Mixed Boundary Conditions.

$$
\begin{cases}\nu_t - u_{xx} = \sin(9x/2), & (x, t) \in (0, \pi) \times (0, \infty), \\
u(0, t) = 0, & t \in (0, \infty), \\
u_x(\pi, t) = 0, & t \in (0, \infty), \\
u(x, 0) = \sin(3x/2), & x \in [0, \pi].\n\end{cases}
$$

Sol. Once again, calling *v* the solution of the homogeneous equation $v_t - v_{xx} = 0$, $v(0,t) = v_x(0,t) = 0$ we have that the ODE obtained by the separation of variables $v(x,t) = X(x)T(t)$ has solutions

- If $\lambda > 0$, $X(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x)$.
- If $\lambda = 0$,

$$
X(x) = A + Bx.
$$

• If $\lambda < 0$,

$$
X(x) = A \cosh(\sqrt{-\lambda}x) + B \sinh(\sqrt{-\lambda}x).
$$

If $\lambda = 0$, from $X(0) = 0$ we get that $A = 0$, and from $X'(\pi) = 0$ we get that $B = 0$, so that only the trivial solution remains.

If $\lambda < 0$, from $X(0) = 0$ we get $A = 0$, and from $X'(\pi) = 0$ we get $B = 0$, so that again, only the trivial solution remains.

Let $\lambda > 0$. From $X(0) = 0$ we get $A = 0$. From $X'(\pi) = 0$ we get cos(√ $(\lambda \pi) = 0.$ That is,

$$
\sqrt{\lambda} = n + \frac{1}{2}
$$
, for $n \in \{0, 1, 2, ...\}$.

Thus, the set of admissible values for λ is $\lambda_n = \left(n + \frac{1}{2}\right)$ 2 \int_0^2 , and the corresponding solutions are $X_n(x) = \sin\left(\left(n + \frac{1}{2}\right)\right)$ 2 $(x).$

4/[6](#page-5-0) November 22, 2021

We are looking for a general solution of the form

$$
u(x,t) = \sum_{n\geq 0} T_n(t) \sin\left(\left(n + \frac{1}{2}\right)x\right)
$$

for some functions $T_n(t)$ to be determined. From initial conditions,

 $T_1(0) = 1$, $T_n(0) = 0$, for all $n \neq 1$.

Imposing that the equation is fulfilled, we get

$$
u(x,t) = \sum_{n\geq 0} \left(T'_n(t) + \left(n + \frac{1}{2} \right)^2 T_n(t) \right) \sin \left(\left(n + \frac{1}{2} \right) x \right) = \sin \left(\frac{9x}{2} \right).
$$

Thus, our ODEs are

 $(n = 1)$ In this case,

$$
T'_1(t) + \frac{9}{4}T_1(t) = 0
$$
, $T_1(0) = 1$, \Rightarrow $T_1(t) = e^{-\frac{9t}{4}}$.

 $(n = 4)$ In this case,

$$
T'_4(t) + \frac{81}{4}T_4(t) = 1
$$
, $T_4(0) = 0$, \Rightarrow $T_4(t) = \frac{4}{81} - \frac{4}{81}e^{-\frac{81t}{4}}$.

 $(n \notin \{1,4\})$ In this case,

$$
T'_n(t) + \left(n + \frac{1}{2}\right)^2 T_n(t) = 0, \quad T_n(0) = 0, \quad \Rightarrow \quad T_n(t) = 0.
$$

And our solution is therefore given by

$$
u(x,t) = e^{-\frac{9t}{4}} \sin\left(\frac{3x}{2}\right) + \frac{4}{81} \left(1 - e^{-\frac{81t}{4}}\right) \sin\left(\frac{9x}{2}\right).
$$

(d)

$$
\begin{cases}\n u_t - u_{xx} = -u, & (x, t) \in (0, \pi) \times (0, \infty), \\
 u(0, t) = 0, & t \in (0, \infty), \\
 u(\pi, t) = 0, & t \in (0, \infty), \\
 u(x, 0) = \sin(x), & x \in [0, \pi].\n\end{cases}
$$

November 22, 2021 $5/6$ $5/6$

Sol. In this case, the corresponding base of functions is given by $X_n(x) = \sin(nx)$ and $\lambda_n = n^2$ are the admissible values associated (see, for instance, Serie 8, Ex 8.1(a) where we have computed it in the homogeneous case). Thus, we are looking for a general solution of the form

$$
u(x,t) = \sum_{n\geq 1} T_n(t) \sin(nx).
$$

From the initial condition,

$$
T_1(0) = 1
$$
, $T_n(0) = 0$, for all $n \ge 2$.

On the other hand, imposing that $u_t - u_{xx} + u = 0$,

$$
\sum_{n\geq 1} (T'_n(t) + n^2 T_n(t) + T_n(t)) \sin(nx) = 0.
$$

That is,

$$
T'_n(t) + (n^2 + 1)T_n(t) = 0
$$
, for all $n \ge 1$.

Solving the corresponding ODEs,

 $(n=1)$ In this case,

$$
T'_1(t) + 2T_1(t) = 0
$$
, $T_1(0) = 1$, \Rightarrow $T_1(t) = e^{-2t}$.

 $(n \geq 2)$ In this case,

$$
T'_n(t) + (n^2 + 1)T_n(t) = 0
$$
, $T_n(0) = 0$, \Rightarrow $T_n(t) = 0$.

And the general solution is given by

$$
u(x,t) = e^{-2t} \sin(x).
$$