ETH Zürich HS 2021

 $1/_{4}$

10.1. Unique solution

Let k > 0 be a positive constant. Let D be a bounded planar domain in \mathbb{R}^2 (that is, $(x,y) \in D \subset \mathbb{R}^2$), and let g = g(x,y) be a continuous function defined on the boundary ∂D (that is, $g \in C(\partial\Omega)$). Let u = u(x,y) be a solution to the Dirichlet problem for the reduced Helmholtz energy in D: let u solve

$$\left\{ \begin{array}{rcl} \Delta u(x,y) - k u(x,y) & = & 0, & \text{for } (x,y) \in D, \\ u(x,y) & = & g(x,y), & \text{for } (x,y) \in \partial D. \end{array} \right.$$

Show that there exists at most a unique solution twice differentiable in D and continuous in \overline{D} , that is, $u \in C^2(D) \cap C(\overline{D})$.

Hint: Assume that there exist two solutions u_1 and u_2 , and consider the difference $v=u_1-u_2$. Arguing as in the proof of the weak maximum principle for the Laplace equation (Theorem 7.5 and Remark 7.6 from Pinchover's book), show that $\max_{\overline{D}} v = \max_{\partial D} v$ and $\min_{\overline{D}} v = \min_{\partial D} v$. Then, use this information to conclude that $u_1 = u_2$.

Sol. Let us use the hint. Let us suppose that there exist two solutions u_1 and u_2 fulfilling the Dirichlet problem. Let $v = u_1 - u_2$. Notice that v = v(x, y) solves

$$\begin{cases} \Delta v(x,y) - kv(x,y) &= 0, & \text{for } (x,y) \in D, \\ v(x,y) &= 0, & \text{for } (x,y) \in \partial D. \end{cases}$$

We just need to prove that $v \equiv 0$ in D. To do so, we will show that $\max_{\overline{D}} v = \min_{\overline{D}} v = 0$. We show both equalities by contradiction.

Notice that $\max_{\overline{D}} v \ge 0$, since v = 0 on ∂D . Let us suppose that $\max_{\overline{D}} v = M > 0$. In particular, there exists some $(x_{\circ}, y_{\circ}) \in D$ such that $v(x_{\circ}, y_{\circ}) = M > 0$, that is, v has a maximum at (x_{\circ}, y_{\circ}) . In particular, we know that $\Delta v(x_{\circ}, y_{\circ}) \le 0$. Therefore,

$$0 = \Delta v(x_{\circ}, y_{\circ}) - kv(x_{\circ}, y_{\circ}) \le -kM < 0,$$

a contradiction.

On the other hand, $\min_{\overline{D}} v \leq 0$, since v = 0 on ∂D . Let us suppose that $\min_{\overline{D}} v = m < 0$. In particular, there exists some $(x_{\circ}, y_{\circ}) \in D$ such that $v(x_{\circ}, y_{\circ}) = m < 0$, that is, v has a minimum at (x_{\circ}, y_{\circ}) . In particular, we know that $\Delta v(x_{\circ}, y_{\circ}) \geq 0$. Therefore,

$$0 = \Delta v(x_{\circ}, y_{\circ}) - kv(x_{\circ}, y_{\circ}) \ge -km > 0,$$

a contradiction. Therefore, if there exists a solution, is unique.

10.2. The mean-value principle Let D be a planar domain, and let $B_R((x_\circ, y_\circ))$ (ball of radius R centered at (x_\circ, y_\circ)) be fully contained in D. Let u be an harmonic

function in D, $\Delta u = 0$ in D. Then, the mean-value principle says that the value of u at (x_{\circ}, y_{\circ}) is the average value of u on $\partial B_R((x_{\circ}, y_{\circ}))$. That is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{2\pi R} \oint_{\partial B_{R}((x_{\circ}, y_{\circ}))} u(x(s), y(s)) ds = \frac{1}{2\pi} \int_{0}^{2\pi} u(x_{\circ} + R\cos\theta, y_{\circ} + R\sin\theta) d\theta.$$

Show that $u(x_{\circ}, y_{\circ})$ is also equal to the average of u in $B_R((x_{\circ}, y_{\circ}))$, that is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{\pi R^2} \int_{B_R((x_{\circ}, y_{\circ}))} u(x, y) dx dy.$$

Sol. Let us use polar coordinates to compute

$$\frac{1}{\pi R^2} \int_{B_R((x_\circ, y_\circ))} u(x, y) \, dx \, dy = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} u(x_\circ + r \cos \theta, y_\circ + r \sin \theta) r \, d\theta \, dr
= \frac{1}{\pi R^2} \int_0^R r \left(\int_0^{2\pi} u(x_\circ + r \cos \theta, y_\circ + r \sin \theta) \, d\theta \right) dr
= \frac{1}{\pi R^2} \int_0^R 2\pi r u(x_\circ, y_\circ) \, dr
= u(x_\circ, y_\circ) \frac{1}{\pi R^2} [\pi r^2]_0^R
= u(x_\circ, y_\circ).$$

We have used here the boundary mean value principle in the balls $B_r((x_o, y_o))$ for each $r \in (0, R)$.

10.3. Weak maximum principle Let B_1 denote the unit ball in \mathbb{R}^2 centered at the origin, and let u = u(x, y) be twice differentiable in B_1 and continuous in $\overline{B_1}$ (that is, $u \in C^2(B_1) \cap C(\overline{B_1})$). Suppose that u solves the Dirichlet problem

$$\begin{cases} \Delta u(x,y) = -1, & \text{for } (x,y) \in B_1, \\ u(x,y) = g(x,y), & \text{for } (x,y) \in \partial B_1. \end{cases}$$

Show that

$$\max_{\bar{B}_1} u \le \frac{1}{2} + \max_{\partial B_1} g.$$

Hint: search for a simple function w such that $\Delta w = 1$, and use it to reduce the problem to an application of the weak maximum principle for harmonic functions.

Sol. We just need to find a function w(x,y) such that $\Delta w(x,y) = 1$, and then consider v(x,y) = u(x,y) + w(x,y). The simplest function such that $\Delta w(x,y) = 1$ is $w(x,y) = \frac{1}{2}x^2$. Thus, let us define

$$v(x,y) = u(x,y) + \frac{1}{2}x^{2}$$
.

Then, v solves

$$\begin{cases} \Delta v(x,y) = 0, & \text{for } (x,y) \in B_1, \\ v(x,y) = g(x,y) + \frac{1}{2}x^2, & \text{for } (x,y) \in \partial B_1. \end{cases}$$

By the weak maximum principle, we know that

$$\max_{\bar{B}_1} v(x,y) = \max_{\partial B_1} \left(g(x,y) + \frac{1}{2} x^2 \right) \le \max_{\partial B_1} g(x,y) + \max_{\partial B_1} \frac{1}{2} x^2.$$

Notice that $\max_{\partial B_1} \frac{1}{2} x^2 = \frac{1}{2}$, so

$$\max_{\bar{B}_1} v(x, y) \le \frac{1}{2} + \max_{\partial B_1} g(x, y).$$

On the other hand, $v(x,y) \ge u(x,y)$ for all $x,y \in B_1$, so

$$\max_{\bar{B}_1} u(x, y) \le \max_{\bar{B}_1} v(x, y) \le \frac{1}{2} + \max_{\partial B_1} g(x, y),$$

as we wanted to see.

10.4. Multiple Choice Determine the correct answer.

(a) Consider the Neumann problem for the Poisson equation

$$\begin{cases} \Delta u = \rho, & \text{in } D, \\ \partial_{\nu} u = g, & \text{on } \partial D, \end{cases}$$

where D = B(0, R) is the ball of radius R > 0 with centre in the origin of \mathbb{R}^2 , and ρ and g are given in polar coordinates (r, θ) by

$$\rho(r,\theta) = r^{\alpha} \sin^2(\theta)$$
, and $g(r,\theta) = C \cos^2(\theta) + r^{2021} \sin(\theta)$,

for some constants $\alpha > 0$ and C > 0. For which values of C > 0 does the problem satisfy the Neumann's necessary condition for existence of solutions?

- $\square C = \frac{R^{\alpha+1}}{\alpha+2}$
- $\square \ C = \frac{R^{\alpha+1}}{\alpha+1}$
- $\Box C = \frac{R^{\alpha+2}}{\alpha+2}$

Sol. We say that the Neumann Problem for the Poisson equation satisfies the necessary condition for existence of solutions if the identity

$$\int_{\partial D} g = \int_{D} \rho,\tag{1}$$

holds. In our particular case we can compute in polar coordinates

$$\int_D \rho = \int_0^R r \int_0^{2\pi} r^{\alpha} \sin^2(\theta) d\theta dr = \pi \frac{R^{\alpha+2}}{\alpha+2},$$

and parametrizing ∂D with the curve $\theta \mapsto (R\cos(\theta), R\sin(\theta))$ we have that

$$\int_{\partial D} g = \int_0^{2\pi} R \left(C \cos^2(\theta) + R^{2021} \sin(\theta) \right) d\theta = RC\pi.$$

Plugging this in Equation (1) we obtain that the identity

$$RC\pi = \pi \frac{R^{\alpha+2}}{\alpha+2},$$

is valid if and only if $C = \frac{R^{\alpha+1}}{\alpha+2}$. The correct answer is the first one.