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10.1. Unique solution

Let k > 0 be a positive constant. Let D be a bounded planar domain in R2 (that
is, (x, y) ∈ D ⊂ R2), and let g = g(x, y) be a continuous function defined on the
boundary ∂D (that is, g ∈ C(∂Ω)). Let u = u(x, y) be a solution to the Dirichlet
problem for the reduced Helmholtz energy in D: let u solve{

∆u(x, y)− ku(x, y) = 0, for (x, y) ∈ D,
u(x, y) = g(x, y), for (x, y) ∈ ∂D.

Show that there exists at most a unique solution twice differentiable in D and
continuous in D, that is, u ∈ C2(D) ∩ C(D).

Hint: Assume that there exist two solutions u1 and u2, and consider the difference v =
u1−u2. Arguing as in the proof of the weak maximum principle for the Laplace equation
(Theorem 7.5 and Remark 7.6 from Pinchover’s book), show that maxD v = max∂D v
and minD v = min∂D v. Then, use this information to conclude that u1 = u2.

Sol. Let us use the hint. Let us suppose that there exist two solutions u1 and u2
fulfilling the Dirichlet problem. Let v = u1 − u2. Notice that v = v(x, y) solves{

∆v(x, y)− kv(x, y) = 0, for (x, y) ∈ D,
v(x, y) = 0, for (x, y) ∈ ∂D.

We just need to prove that v ≡ 0 in D. To do so, we will show that maxD v =
minD v = 0. We show both equalities by contradiction.

Notice that maxD v ≥ 0, since v = 0 on ∂D. Let us suppose that maxD v = M > 0.
In particular, there exists some (x◦, y◦) ∈ D such that v(x◦, y◦) = M > 0, that is, v
has a maximum at (x◦, y◦). In particular, we know that ∆v(x◦, y◦) ≤ 0. Therefore,

0 = ∆v(x◦, y◦)− kv(x◦, y◦) ≤ −kM < 0,

a contradiction.

On the other hand, minD v ≤ 0, since v = 0 on ∂D. Let us suppose that minD v =
m < 0. In particular, there exists some (x◦, y◦) ∈ D such that v(x◦, y◦) = m < 0,
that is, v has a minimum at (x◦, y◦). In particular, we know that ∆v(x◦, y◦) ≥ 0.
Therefore,

0 = ∆v(x◦, y◦)− kv(x◦, y◦) ≥ −km > 0,
a contradiction. Therefore, if there exists a solution, is unique.

10.2. The mean-value principle Let D be a planar domain, and let BR((x◦, y◦))
(ball of radius R centered at (x◦, y◦)) be fully contained in D. Let u be an harmonic
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function in D, ∆u = 0 in D. Then, the mean-value principle says that the value of u
at (x◦, y◦) is the average value of u on ∂BR((x◦, y◦)). That is,

u(x◦, y◦) = 1
2πR

∮
∂BR((x◦,y◦))

u(x(s), y(s)) ds = 1
2π

∫ 2π

0
u(x◦ +R cos θ, y◦ +R sin θ) dθ.

Show that u(x◦, y◦) is also equal to the average of u in BR((x◦, y◦)), that is,

u(x◦, y◦) = 1
πR2

∫
BR((x◦,y◦))

u(x, y) dx dy.

Sol. Let us use polar coordinates to compute
1
πR2

∫
BR((x◦,y◦))

u(x, y) dx dy = 1
πR2

∫ R

0

∫ 2π

0
u(x◦ + r cos θ, y◦ + r sin θ)r dθ dr

= 1
πR2

∫ R

0
r
(∫ 2π

0
u(x◦ + r cos θ, y◦ + r sin θ) dθ

)
dr

= 1
πR2

∫ R

0
2πru(x◦, y◦) dr

= u(x◦, y◦) 1
πR2 [πr2]R0

= u(x◦, y◦).

We have used here the boundary mean value principle in the balls Br((x◦, y◦)) for
each r ∈ (0, R).

10.3. Weak maximum principle Let B1 denote the unit ball in R2 centered at
the origin, and let u = u(x, y) be twice differentiable in B1 and continuous in B1 (that
is, u ∈ C2(B1) ∩ C(B1)). Suppose that u solves the Dirichlet problem{

∆u(x, y) = −1, for (x, y) ∈ B1,
u(x, y) = g(x, y), for (x, y) ∈ ∂B1.

Show that
max
B̄1

u ≤ 1
2 + max

∂B1
g.

Hint: search for a simple function w such that ∆w = 1, and use it to reduce the
problem to an application of the weak maximum principle for harmonic functions.

Sol. We just need to find a function w(x, y) such that ∆w(x, y) = 1, and then
consider v(x, y) = u(x, y) + w(x, y). The simplest function such that ∆w(x, y) = 1 is
w(x, y) = 1

2x
2. Thus, let us define

v(x, y) = u(x, y) + 1
2x

2.
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Then, v solves {
∆v(x, y) = 0, for (x, y) ∈ B1,
v(x, y) = g(x, y) + 1

2x
2, for (x, y) ∈ ∂B1.

By the weak maximum principle, we know that

max
B̄1

v(x, y) = max
∂B1

(
g(x, y) + 1

2x
2
)
≤ max

∂B1
g(x, y) + max

∂B1

1
2x

2.

Notice that max∂B1
1
2x

2 = 1
2 , so

max
B̄1

v(x, y) ≤ 1
2 + max

∂B1
g(x, y).

On the other hand, v(x, y) ≥ u(x, y) for all x, y ∈ B1, so

max
B̄1

u(x, y) ≤ max
B̄1

v(x, y) ≤ 1
2 + max

∂B1
g(x, y),

as we wanted to see.

10.4. Multiple Choice Determine the correct answer.

(a) Consider the Neumann problem for the Poisson equation∆u = ρ, in D,
∂νu = g, on ∂D,

where D = B(0, R) is the ball of radius R > 0 with centre in the origin of R2, and ρ
and g are given in polar coordinates (r, θ) by

ρ(r, θ) = rα sin2(θ), and g(r, θ) = C cos2(θ) + r2021 sin(θ),

for some constants α > 0 and C > 0. For which values of C > 0 does the problem
satisfy the Neumann’s necessary condition for existence of solutions?

� C = Rα+1

α+2

� C = Rα+1

α+1

� C = Rα+2

α+2
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Sol. We say that the Neumann Problem for the Poisson equation satisfies the
necessary condition for existence of solutions if the identity∫

∂D
g =

∫
D
ρ, (1)

holds. In our particular case we can compute in polar coordinates
∫
D
ρ =

∫ R

0
r
∫ 2π

0
rα sin2(θ) dθ dr = π

Rα+2

α + 2 ,

and parametrizing ∂D with the curve θ 7→ (R cos(θ), R sin(θ)) we have that∫
∂D
g =

∫ 2π

0
R
(
C cos2(θ) +R2021 sin(θ)

)
dθ = RCπ.

Plugging this in Equation (1) we obtain that the identity

RCπ = π
Rα+2

α + 2 ,

is valid if and only if C = Rα+1

α+2 . The correct answer is the first one.
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