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11.1. Uniqueness of solution

Let D ⊆ R2 be a planar domain. Let f : ∂D → R be a continuous function defined
on the boundary.

Show that the following elliptic problem{
∆u = u, in D,
u = f, on ∂D,

admits at most one smooth solution.

Hint: suppose that u1 and u2 are two solutions of the above problem. What can we
say about u1 − u2?

Let u1, u2 : D̄ → R be two solutions. Let v := u1 − u2 be the difference. Notice that
v satisfies {

∆v = v, in D,
v = 0, on ∂D,

Assume that v > 0 somewhere in D. Let (x, y) ∈ D be the maximum point of v.
Then we have v(x, y) > 0 and ∆v ≤ 0, which is a contradiction since v = ∆v.

Hence, it must be v ≤ 0. Similarly (just repeating the argument for −v instead of v)
we can show v ≥ 0. Hence v = 0 everywhere and thus u1 = u2.

11.2. Heat equation

Consider a smooth solution u : [0, 1]× [0,∞)→ R of the heat equation
ut − uxx = 0, (x, t) ∈ (0, 1)× (0,∞),
u(x, 0) = x(1− x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ∈ (0,∞).

Show that 0 ≤ u(0.5, 100) ≤ 0.00001.

Hint: Notice that the function w := e−π
2t sin(πx) solves the same heat equation with

a different initial condition.

First, let us check that w := e−π
2t sin(πx) solves the equation:

∂tw = −π2w = ∂xxw .

One can check that sin(πx) ≥ x(1− x) in the interval [0, 1] (for example, you can use
wolfram-alpha for checking this!). Thus, we have w(x, 0) ≥ u(x, 0).

Similarly, 0 solves the equation and u(x, 0) ≥ 0.
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By the comparison principle for solutions of the heat equation (which is an easy
consequence of the maximum principle for parabolic equations), we deduce 0 ≤
u(x, t) ≤ w(x, t) for all x ∈ (0, 1) and t ≥ 0. In particular we find

0 ≤ u(0.5, 100) ≤ w(0.5, 100) = e−100π2 sin
(π

2
)

= e−100π2 � 0.00001 .

11.3. Separation of variables for elliptic equations

(a) Find the solution to
∆u = 0, for 0 < x < π, 0 < y < π,

u(x, 0) = u(x, π) = 0, for 0 ≤ x ≤ π,
u(0, y) = 0, for 0 ≤ y ≤ π
u(π, y) = sin(y), for 0 ≤ y ≤ π.

Sol. We refer to subsection 7.7.1 from Pinchover’s book.

We are looking for an harmonic function u such that

u(0, y) = 0, u(π, y) = sin(y), u(x, 0) = u(x, π) = 0.

(Notice that since the solution at (x, 0) and (x, π) is already 0, we do not need to
split it into two functions, and we can directly work with u. Compare with Example
7.21 in Pinchover’s.)

We use separation of variables, and we assume that u can be expressed as sum of
harmonic functions w(x, y) = X(x)Y (y). Imposing that w is harmonic we reach that

Y ′′(y) + λY (y) = 0,

and Y (0) = Y (π) = 0. On the other hand, we also reach

X ′′(x)− λX(x) = 0.

The problem for Y is already standard, and we have as eigenvalues λn = n2 and as
eigenfucntions Yn(y) = sin(ny), for n = 1, 2, . . . . Thus, the equation for X becomes
simply

X ′′n(x)− n2Xn(x) = 0.
Solutions to the previous problem are of the form Xn(x) = αn sinh(nx) + βn cosh(nx).
However, such basis (in terms of sinh(nx) and cosh(nx)) is not very useful when
dealing with boundary behaviour for this problem at x = 0, π. Thus, we choose
instead the basis sinh(nx) and sinh(nx− nπ). This is standard, and has been already
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used in the book. Let us now show why we can express the solution in that basis
(although it is not required by the problem):

We show how to go from the previous basis to the new one. That is, we want to write

Xn(x) = γn sinh(nx) + δn sinh(n(x− π)),

and find the coefficients γn and δn in terms of αn and βn. To do that, we use that
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y), that sinh is odd and cosh is even.
Therefore,

sinh(n(x− π)) = sinh(nx) cosh(nπ)− cosh(nx) sinh(nπ),

and
Xn(x) = (γn + δn cosh(nπ)) sinh(nx)− δn sinh(nπ) cosh(nx),

and we get that βn = −δn sinh(nπ) and αn = γn + δn cosh(nπ). That is, δn =
−βn/ sinh(nπ) and γn = αn − δn cosh(nπ); and both bases are interchangeable.

Thus, let us express the solution u(x, y) as

u(x, y) =
∑
n≥1

sin(ny) (δn sinh(nx) + γn sinh(n(x− π))) .

Now, since u(0, y) = 0, we deduce that γn = 0. On the other hand, since u(π, y) =
sin(y),

u(π, y) =
∑
n≥1

δn sin(ny) sinh(nπ) = sin(y),

we deduce that δ1 = 1
sinh(π) , and δn = 0 for n ≥ 2. Thus, our solution is going to be

u(x, y) = sin(y) sinh(x)
sinh(π) .

(b) Find the solution to

∆u = sin(x) + sin(2y), for π < x < 2π, π < y < 2π,
u(x, π) = 0, for π ≤ x ≤ 2π,
u(x, 2π) = − sin(x), for π ≤ x ≤ 2π,
u(π, y) = 0, for π ≤ y ≤ 2π,
u(2π, y) = − sin(2y)

4 , for π ≤ y ≤ 2π.

Hint: Find a simple function f(x, y) such that v := u + f(x, y) is harmonic (i.e.
∆v = 0). Then, solve for v.
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Sol. Since sin(t)′′ = − sin(t), we can easily check that

0 = ∆u− sin(x)− sin(2y) = ∆
(
u+ sin(x) + sin(2y)

4

)
.

Hence, setting v(x, y) := u(x, y) + sin(x) + sin(2y)
4 we obtain that v is an harmonic

function solving

∆v = 0, for π < x < 2π, π < y < 2π,
v(x, π) = sin(x), for π ≤ x ≤ 2π,
v(x, 2π) = 0, for π ≤ x ≤ 2π,
v(π, y) = sin(2y)

4 , for π ≤ y ≤ 2π,
v(2π, y) = 0, for π ≤ y ≤ 2π.

We factorize then v = v1 + v2 where

∆v1 = 0, for π < x < 2π, π < y < 2π,
v1(x, π) = 0, for π ≤ x ≤ 2π,
v1(x, 2π) = 0, for π ≤ x ≤ 2π,
v1(π, y) = sin(2y)

4 , for π ≤ y ≤ 2π,
v1(2π, y) = 0, for π ≤ y ≤ 2π.

and 

∆v2 = 0, for π < x < 2π, π < y < 2π,
v2(x, π) = sin(x), for π ≤ x ≤ 2π,
v2(x, 2π) = 0, for π ≤ x ≤ 2π,
v2(π, y) = 0, for π ≤ y ≤ 2π,
v2(2π, y) = 0, for π ≤ y ≤ 2π.

This corresponds to the following splitting:

v
=

si
n(

2y
)

4 0

v = sin(x)

0

∆v = 0 0 0

v2 = sin(x)

0

∆v2 = 0 +

v 1
=

si
n(

2y
)

4 0

0

0

∆v1 = 0

Figure 1: Splitting of the Laplace equation.

After operating the classical separation of variable, we have that

v1(x, y) =
+∞∑
n=1

(
An sinh(n(x− π)) +Bn sinh(n(x− 2π))

)
sin(n(y − π)),

v2(x, y) =
+∞∑
n=1

(
Cn sinh(n(y − π)) +Dn sinh(n(y − 2π))

)
sin(n(x− π)), .
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To determinate the coefficients, we have to take advantage of the boundary data:

0 = v1(2π, y) =
+∞∑
n=1

An sinh(nπ) sin(n(y − π)),

which implies An ≡ 0. On the other side,

sin(2y)
4 = v1(π, y) =

+∞∑
n=1

Bn sinh(−nπ) sin(n(y − π)),

and since sin(2y) = sin(2(y−π)) we obtain thatB2 = (4 sinh(−2π))−1 = −(4 sinh(2π))−1,
and Bn = 0 otherwise. Similarly, Cn ≡ 0 and combining

sin(x) = v2(x, π) =
+∞∑
n=1

Dn sinh(−πn) sin(n(x− π)),

with the identity sin(x) = − sin(x − π) we obtain that D1 = (− sinh(−π))−1 =
sinh(π)−1, and Dn = 0 otherwise. Combining everything we obtain that

u(x, y) = v(x, y)− sin(x)− sin(2y)
4 = v1(x, y) + v2(x, y)− sin(x)− sin(2y)

4

= −sinh(2(x− 2π))
4 sinh(2π) sin(2(y − π)) + sinh(y − 2π)

sinh(π) sin(x− π)− sin(x)− sin(2y)
4

= −
(sinh(2(x− 2π))

4 sinh(2π) + 1
4

)
sin(2y)−

(sinh(y − 2π)
sinh(π) + 1

)
sin(x).
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