Serie 1

1. Es seien $a, b \in \mathbb{R}$.

(a) Zeigen Sie, dass für $\alpha \in \mathbb{R}$ folgendes gilt:

$$\alpha \mathcal{F}_{a,b} = \mathcal{F}_{\alpha a, \alpha b}.$$

(b) Zeigen Sie, dasss es Skalare $x, y \in \mathbb{R}$ gibt, so dass

$$\mathcal{F}_{a,b} = x\mathcal{F}_{1,1} + y\mathcal{F}_{1,-1}.$$

(c) Zeigen Sie, dass es Skalare $x, y \in \mathbb{R}$ gibt, so dass

$$\mathcal{F}_{a,b} = x\mathcal{F}_{1,\varphi} + y\mathcal{F}_{1,\psi}.$$

(Mit anderen Worten, schreiben Sie $\mathcal{F}_{a,b}$ als eine Linearkombination der beiden Eigenfolgen von S.)

(d) Finden Sie eine geschlossene Form für den nten Wert der Fibonacci Folge $\mathcal{F}_{a,b}$.

2. Eine Folge (c_0, c_1, c_2, \dots) ist eine *Pell-Folge* wenn es $a, b \in \mathbb{R}$ gibt so dass

$$c_0 = a$$
, $c_1 = b$, $c_n = 2c_{n-1} + c_{n-2}$;

wir nennen diese Folge $\mathcal{P}_{a,b}$. Es sei V die Menge aller Pell-Folgen.

- (a) Es seien \mathcal{P} und \mathcal{Q} Pell-Folgen und $\alpha \in \mathbb{R}$. Zeigen Sie, dass $\mathcal{P} + \mathcal{Q}$ und $\alpha \mathcal{Q}$ ebenfalls Pell-Folgen sind.
- (b) Es sei $(c_0, c_1, c_2, ...)$ eine Pell-Folge. Zeigen Sie, dass die Folge $(c_1, c_2, c_3, ...)$ ebenfalls eine Pell-Folge ist.
- (c) Es sei $S: V \to V$ der Verschiebungsoperator, der die Folge (c_0, c_1, c_2, \dots) auf (c_1, c_2, c_3, \dots) abbildet. Bestimmen Sie die Eigenfolgen von S in V mit den dazugehoerigen Eigenwerten.
- (d) Schreiben Sie $\mathcal{P}_{a,b}$ als eine Linearkombination der beiden Eigenfolgen.
- (e) Finden Sie eine geschlossene Form fuer den nten Wert von $\mathcal{P}_{a,b}$.
- (f) (\star) Was geht schief, wenn wir statt dessen die Folgen (c_0,c_1,c_2,\dots) betrachten, die ueber die Rekursion

$$c_0 = a$$
, $c_1 = b$ $c_n = 2c_{n-1} - c_{n-2}$

definiert sind?

Die Frage (\star) ist eine schwierigere Zusatzfrage. Sie sollten sie nur dann in Angriff nehmen, wenn Sie die anderen Fragen geloest haben.

- 3. Bestimme alle Teilmengen der Menge $\{1, 2, 3\}$.
- 4. Es seien $f:X\to Y,\,g:Y\to Z$ Funktionen.
 - (a) Wenn f und g injektiv sind, dann ist auch $g \circ f$ injektiv.
 - (b) Wenn f und g surjektiv sind, dann ist auch $g \circ f$ surjektiv.
- 5. Es sei $M = \{1, \dots, n\}$. Eine Permutation ist eine bijektive Abbildung $\sigma: M \to M$. Bestimmen Sie die Anzahl aller Permutationen.