Serie 11

1. Sei $B = (v_1, \ldots, v_n)$ eine geordnete Basis von V und $B' = (w_1, \ldots, w_m)$ eine geordnete Basis von W. Sei $B'^* = (w_1^*, \ldots, w_m^*)$ die zu B' duale Basis von W^* . Zeigen Sie, dass für jede lineare Abbildung $f: V \to W$ gilt

$$([f]_{\mathcal{B}'}^{\mathcal{B}})_{ij} = w_i^*(f(v_i))$$
 für alle $1 \leq i \leq m, \ 1 \leq j \leq n.$

2. Sei $n \ge 1$. Dann definieren wir das kanonische Skalarprodukt auf \mathbb{R}^n als

$$\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R},$$

 $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$

- (a) Sei $u \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass $\ell_u \colon \mathbb{R}^n \to \mathbb{R}, \ v \mapsto \langle u, v \rangle$ eine lineare Abbildung ist.
- (b) Es sei $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis von \mathbb{R}^n . Zeigen Sie, dass $\{\ell_{b_1}, \dots, \ell_{b_n}\}$ eine Basis des Dualraums $(\mathbb{R}^n)^*$ ist.
- (c) Ein Vektor $v \in \mathbb{R}^n$ ist orthogonal zu $u \in \mathbb{R}^n$, falls $v \in \ker(\ell_u)$ gilt. Zeigen Sie, dass es einen Isomorphismus

$$\langle u \rangle^{\circ} \cong \ker(\ell_u)$$

gibt. Das heisst, der Annulator von $\langle u \rangle$ ist Isomorph zum Untervektorraum aller Vektoren, die orthogonal zu u sind.

(d) Folgern Sie, dass für einen Unterraum $U \leq \mathbb{R}^n$ gilt

$$U^{\circ} \cong \{ v \in \mathbb{R}^n \mid v \in \ker(\ell_u), \ \forall u \in U \}.$$

(e) Bestimmen Sie diejenigen Unterräume von \mathbb{R}^3 , zu denen die Annulatoren

$$U_1 = \left\langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\rangle, \quad U_2 = \left\langle \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \right\rangle$$

nach (d) isomorph sind.

- 3. Es sei V der Vektorraum der reellen Polynome von Grad kleiner gleich 3.
 - (a) Finden Sie alle reellen Zahlen $x \in \mathbb{R}$, für die die Evaluationsabbildung $\operatorname{ev}_x \colon V \to \mathbb{R}$, $p \mapsto p(x)$ ein Element von V^* beschreibt.
 - (b) Für $i \in \{0, 1, 2, 3\}$ definieren wir die Abbildungen $f_i : V \to \mathbb{R}$ durch $f_i(p) = \int_0^1 p^{(i)}(t) dt$ für alle Polynome $p \in V$ und wobei $p^{(i)}$ die *i*-te Ableitung des Polynomes p ist. Zeigen Sie, dass (f_0, f_1, f_2, f_3) eine Basis des Dualraumes V^* von V ist.

- (c) Drücken Sie die Elemente der zur Standardbasis $(1,t,t^2,t^3)$ dualen Basis des Dualraumes V^* als Linearkombination der Elemente der Basis (f_0,f_1,f_2,f_3) aus.
- 4. Sei $V=\mathbb{R}^3$ und $T:V\to V$ die lineare Abbildung, die durch die Matrix

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$

bezüglich der Standardbasis gegeben ist.

- (a) Bestimmen Sie die Darstellungsmatrix der dualen Abbildung $T^*:V^*\to V^*$ bezüglich der dualen Basis der Standardbasis.
- (b) Berechnen Sie $\ker(T^*)$.
- (c) Bestimmen Sie $\operatorname{im}(T^*)$ und überprüfen Sie, dass

$$\dim(\ker(T^*)) + \dim(\operatorname{im}(T^*)) = \dim(V).$$