Serie 22

Adjungierte Abbildung, Selbstadjungierten und normalen Operatoren

Definition. Ein linear Operator $T:V\to V$ heißt selbstadjungiert, wenn $T=T^*$. Anders ausgedrückt ist $T\in \operatorname{Hom}(V)$ selbstadjungiert genau dann, wenn

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

für alle $v, w \in V$ gilt.

1. Es seien $(V, \langle \cdot, \cdot \rangle_V)$ und $(W, \langle \cdot, \cdot \rangle_W)$ IP Räume über einem Körper \mathbb{K} , und es sei $T: V \to W$ linear. Zeige, dass

$$\operatorname{Bild}(T^*) = \ker(T)^{\perp} \text{ and } \operatorname{Bild}(T) = \ker(T^*)^{\perp}.$$

- 2. Seien V und W wie oben. Nehme an, dass $T \in \text{Hom}(V, W)$. Zeige, dass
 - (a) T genau dann injektiv ist, wenn T^* surjektiv ist.
 - (b) T genau dann surjektiv ist, wenn T^* injektiv ist.
- 3. Sei K ein Körper und sei $(V, \langle \cdot, \cdot \rangle)$ ein endlichdimensionaler K-Skalarproduktraum. Betrachte $T \in \operatorname{End}(V)$ und einen Unterraum U von V. Zeige, dass U invariant unter T ist genau dann wenn U^{\perp} invariant unter T^* ist.
- 4. (a) Geben Sie ein Beispiel für einen Operator $T \in \text{Hom}(\mathbb{C}^2)$ an, der nicht normal ist. Erklären Sie sorgfältig, warum es sich nicht um einen normalen Operator handelt.
 - (b) Geben Sie ein Beispiel für einen diagonalisierbaren Operator $T \in \text{Hom}(\mathbb{C}^2)$ an, der nicht normal ist.
 - (c) Geben Sie ein Beispiel für einen Operator $T \in \text{Hom}(\mathbb{C}^3)$ an, der normal, aber nicht selbstadjungiert ist.
 - (d) Geben Sie ein Beispiel für einen Operator $T \in \text{Hom}(\mathbb{R}^2)$ an, der diagonalisierbar, aber nicht selbstadjungiert ist.
 - (e) Uberprüfen Sie, ob der Operator

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} v$$

normal ist. Erklären Sie, warum er nicht selbstadjungiert ist.

5. Sei \mathbb{R}^2 mit dem Skalarprodukt ausgestattet

$$\langle x, y \rangle = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2, \ x, y \in \mathbb{R}^2.$$

- (a) Definieren Sie einen selbstadjungierten Operator T auf dem Skalarproduktraum $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ mit Eigenwerten $\sqrt{2}, 1$.
- (b) Ist der lineare Operator

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} v$$

ein selbstadjungierter Operator auf dem Skalarproduktraum ($\mathbb{R}^2, \langle \cdot, \cdot \rangle$)?

6. Sei V ein \mathbb{K} -Vektorraum mit IP. Fixiere $u, x \in V$. Definiere $T \in \text{Hom}(V)$ durch

$$Tv = \langle v, u \rangle x$$

für jedes $v \in V$.

- (a) Angenommen, $\mathbb{K} = \mathbb{R}$. Zeigen Sie, dass T genau dann selbstadjungiert ist, wenn $\{u,x\}$ linear abhängig ist.
- (b) Zeigen Sie, dass T genau dann normal ist, wenn $\{u, x\}$ linear abhängig ist.