Serie 24

Tensorprodukt

- 1. Sei $S_1 = \{1, x, 2x, x^2, \dots, x^k\}$ und $S_2 = \{1, x, x^2, \dots, x^k\}$. Sei K ein Körper. Zeigen Sie, dass $K(S_1)$ nicht isomorph zu $K(S_2)$ ist.
- 2. Vereinfache den folgenden Ausdruck in $\mathbb{R}^2 \otimes \mathbb{R}^3$.

$$-\begin{pmatrix}1\\2\end{pmatrix}\otimes\begin{pmatrix}3\\-1\\2\end{pmatrix}+\begin{pmatrix}3\\2\end{pmatrix}\otimes\begin{pmatrix}1\\0\\1\end{pmatrix}+2\begin{pmatrix}1\\1\end{pmatrix}\otimes\begin{pmatrix}2\\-1\\1\end{pmatrix}-\begin{pmatrix}1\\0\end{pmatrix}\otimes\begin{pmatrix}5\\0\\1\end{pmatrix}$$

- 3. Betrachte die K-Vektorräume U,V,W. Zeige mithilfe der universellen Eigenschaften, dass:
 - (a) $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$
 - (b) $U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W)$
- 4. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt antisymmetrisch (oder schiefsymmetrisch), falls

$$A^{\top} = -A$$
.

Sei nun $A \in \mathbb{R}^{n \times n}$ eine reelle antisymmetrische Matrix. Beweise:

- (a) A is normal.
- (b) Alle Eigenwerte von A sind rein imaginär oder 0.
- (c) Es existiert eine orthogonale Matrix $Q \in \mathbb{R}^{n \times n}$, so dass

$$Q^{\top}AQ = \begin{pmatrix} 0 & \lambda_1 & & & & \\ -\lambda_1 & 0 & & & & \\ & & \ddots & & & \\ & & & 0 & \lambda_k & \\ & & & -\lambda_k & 0 & \\ & & & & 0_{(n-2k)\times(n-2k)} \end{pmatrix}$$

mit $\lambda_j>0$ für $j=1,\dots,k.$ Die Matrix besteht aus k vielen $2\times 2\text{-Bl\"{o}cken}$ der Form

$$\begin{pmatrix} 0 & \lambda_j \\ -\lambda_j & 0 \end{pmatrix}$$

und einem Nullblock, falls n ungerade ist.

5. Zeige: Ist $1 \leq n := \min\{\dim_k(V_1), \dim_K(V_2)\} < \infty$ für Vektorräume V_1 und V_2 , so ist jeder Tensor in $V_1 \otimes_K V_2$ eine Summe von n reinen Tensoren, aber im allgemeinen nicht von n-1 reinen Tensoren.