Serie 6

ENDLICH ERZEUGTE ABELSCHE GRUPPEN

- **36.** (a) Zeige, dass $\langle (1,1) \rangle \leqslant \mathbb{Z} \times \mathbb{Z}$ nicht Produktform hat. Das heisst, es existieren keine Untergruppen $H_1, H_2 \leqslant \mathbb{Z}$ mit $\langle (1,1) \rangle = H_1 \times H_2$.
 - (b) Zeige, dass jede endlich erzeugte Untergruppe von $(\mathbb{Q}, +)$ trivial oder unendlich zyklisch ist. Insbesondere ist \mathbb{Q} nicht endlich erzeugt.
 - (c) Sei $G = (\mathbb{Q}^*, \cdot)$. Zeige, dass der Index $[G : G^2]$ unendlich ist.
- 37. Hauptsatz über endlich erzeugte abelsche Gruppen.
 - (a) Beweise folgende Variante von Korollar 5.5 bzw des Hauptsatzes über endlich erzeugte abelsche Gruppen:

Sei G eine endlich erzeugte abelsche Gruppe. Dann existieren natürliche Zahlen n,k und paarweise verschiedene Primzahlen p_1,\ldots,p_n , sodass für jedes $1\leqslant i\leqslant n$ eine positive natürliche Zahl j_i und positive natürliche Zahlen $\alpha_{i1},\ldots,\alpha_{ij_i}$ existieren, sodass gilt

$$G \cong \left(\prod_{i=1}^n \prod_{\iota=1}^{j_i} C_{p_i^{\alpha_{i\iota}}}\right) \times \mathbb{Z}^k$$
.

Bemerkung: Der Hauptsatz bzw. Korollar 5.5 darf im Beweis verwendet werden.

- (b) Zeige: Diese Zerlegung ist bis auf Reihenfolge der Faktoren eindeutig.
- (c) Zeige: Die Zerlegung in Korollar 5.5 ist bis auf Reihenfolge der Faktoren eindeutig.
- (d) Bestimme, bis auf Isomorphie, alle abelschen Gruppen der Ordnung 72.