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Abstract

Building on Donald A. Martin’s work ”A simple proof that determinacy implies Lebesgue measur-
ability”, this thesis provides a detailed proof that the axiom of determinacy implies that all sets
of real numbers are Lebesgue measurable. To enhance accessibility, omitted steps from Martin’s
paper are filled in, and basic concepts from measure theory and game theory are systematically in-
troduced. Finally, this thesis extends Martin’s results to the context of multidimensional Lebesgue
measure.
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Preface

Historical context

The debate around the existence of non-measurable sets has lead to many fascinating results. In
1905 Giuseppe Vitali proofed the existence of a non-measurable set utilizing the axiom of choice
[11]. However, the choice function used in Vitali’s proof is not measurable and cannot be defined in
a natural way, leading to historical controversy. Henri Lebesgue himself expressed skepticism that
a non-measurable set could ever be defined uniquely [6, ch. 2.3].

Substantial progress in this debate was made in 1970 when Robert M. Solovay constructed a model
of set theory in which every set of real numbers is Lebesgue measurable, providing rigorous math-
ematical support for Lebesgue’s concerns [9]. A less constructive alternative to Solovay’s approach
is to replace the axiom of choice with the axiom of determinacy, introduced by Jan Mycielski and
Hugo Steinhaus in 1962 [7]. Indeed the axiom of determinacy implies that every set of real numbers
is measurable; a result first shown by Jan Mycielski and Stanis law Świerczkowski in 1964 [8].

Purpose of this text

The objective of this bachelor thesis is to thoroughly investigate and elaborate on the proof presented
in the article ”A simple proof that determinacy implies Lebesgue measurability” by Donald A.
Martin [4] and to develop a generalization of Martin’s proof, extending it to the multidimensional
Lebesgue measure. The aim is that a mathematics bachelor student with rudimentary knowledge of
set theory and measure theory can comprehend these proofs without requiring additional research.

Structure

This thesis is divided into three chapters. The initial section of the first chapter provides an overview
of relevant measure-theoretic results and definitions. Following this, the axiom of determinacy is
introduced along with the notation for games that will be used throughout the thesis.

The second chapter shows that the axiom of determinacy implies that all sets are measurable. To
achieve this rigorously, auxiliary tools are constructed and necessary lemmas are proven.

The third and final chapter summarizes the strategy used to prove that the axiom of determinacy
implies that all sets are measurable. Additionally, it discusses an approach to generalize this result
to subsets of Rm. The two key lemmas of this generalization are proven in Appendix A and
Appendix B, respectively.
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Notation

This section clarifies the notation used throughout the thesis.

The set of real numbers is denoted by R, and intervals are represented using angled and closed
brackets (i.e., (a, b] denotes the interval from a to b, excluding a but including b).

The smallest nonempty limit ordinal, corresponding to the natural numbers, is denoted by
ω = {0, 1, 2, . . .}. Thus, for all n ∈ ω we have n = {0, 1, . . . , n− 1}, which allows for more compact
notation in certain contexts.

For two sets A and B, the set of all functions from A to B is denoted by AB (e.g., ωω represents
the set of all infinite sequences of natural numbers). For f ∈ AB and subsets A′ ⊆ A, the function
f restricted to A′ is denoted by f |A′ , and the image of A′ under f is denoted by f(A′).

Sequences are denoted using angled brackets. Specifically, given some n ∈ ω, a set A, and elements
a0, . . . , an−1 ∈ A, the function

n→ A, k 7→ ak

is denoted by ⟨a0, . . . , an−1⟩ or by ⟨ak : k ∈ n⟩. Similarly, given elements ak ∈ A for all k ∈ ω, the
function

ω → A, k 7→ ak

is denoted by ⟨a0, a1, a2, . . .⟩ or by ⟨ak : k ∈ ω⟩.

Finally, given two finite sequences ⟨a0, . . . , an−1⟩ and ⟨b0, . . . , bm−1⟩, their concatenation is defined
as follows:

⟨a0, . . . , an−1⟩⌢⟨b0, . . . , bm−1⟩ := ⟨a0, . . . , an−1, b0, . . . , bm−1⟩.

Additional notation for more complex topics will be introduced and discussed in detail as needed.
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1 Intruduction

1.1 Lebesgue measure

This section presents the notations and definitions of the measure-theoretic concepts used in this
thesis along with some useful facts. Most results from this section won’t be proven here, but
references for proofs will be provided. For a more detailed discussion about measure theory, see [1]
or [2].

First, we define the (outer) Lebesgue measure on R:

Definition 1.1. For a, b ∈ R ∪ {±∞} with a < b, we define

µ
(
(a, b)

)
= µ

(
[a, b)

)
= µ

(
(a, b]

)
= µ

(
[a, b]

)
= b− a,

where the convention +∞− a = b− (−∞) = +∞ is used.
Given an arbitrary set A ⊆ R, the outer measure of A is defined as

µ∗(A) := inf

{ ∞∑
k=0

µ(Ik) : each Ik is an interval and A ⊆
∞⋃
k=0

Ik

}
.

Further A is called measurable if for all sets B ⊆ R it holds

µ∗(B) = µ∗(B ∩A) + µ∗(B \A).

For measurable sets A ⊆ R we call µ(A) := µ∗(A) the measure of A.

Remark 1.2. The abuse of notation might lead to confusion, as µ(I) has already been defined for
intervals I ⊆ R ∪ {±∞}. However, every interval I ⊆ R is measurable, and the two definitions of
µ(I) coincide. For a proof, see [1, Lemma 9.5].

The definition of the outer measure raises the question of whether an inner measure exists too.
Indeed, an inner measure can be defined, but one has to be somewhat careful; the inner measure is
not simply some supremum of the measure of inscribing intervals.

Definition 1.3. If A ⊆ [−n, n] for some n ∈ ω, the inner measure of A is defined as

µ∗(A) := µ
(
[−n, n]

)
− µ∗([−n, n] \A

)
.

It generally holds that µ∗(A) ≤ µ∗(A) and further µ∗(A) = µ∗(A) if and only if A is measurable
[1, Corollary 16.4]. Therefore the inner measure can be used as a tool to check whether a set is
measurable.

To estimate the inner and outer measure of sets we will rely on the following fact.

Fact 1.4. For any set B ⊆ [−1, 1] and measurable sets A,C ⊆ R with A ⊆ B ⊆ C, it holds that

µ(A) ≤ µ∗(B) ≤ µ∗(B) ≤ µ(C).

Proof. The last inequality, µ∗(B) ≤ µ(C), follows directly from the definition of the outer measure.
The inequality µ∗(B) ≤ µ∗(B) was discussed above.

1



For the first inequality, µ(A) ≤ µ∗(B), note that [−1, 1] \B ⊆ [−1, 1] \A, and thus

µ∗([−1, 1] \B
)
≤ µ∗([−1, 1] \A

)
.

Using this inequality and the fact that A ⊆ [−1, 1] is measurable, we conclude

µ(A) + µ∗([−1, 1] \B
)
≤ µ∗([−1, 1] ∩A

)
+ µ∗([−1, 1] \A

)
= µ([−1, 1]),

and therefore,
µ(A) ≤ µ([−1, 1]) − µ∗([−1, 1] \B

)
= µ∗(B).

Finally, the following fact about the measure of unions and intersections will be needed.
This is a part of [2, Theorem 1.2], where a proof can be found.

Fact 1.5. For any sequence ⟨Ak : k ∈ ω⟩ of measurable sets the following statements hold:

(i) The union
⋃
k∈ω

Ak and intersection
⋂
k∈ω

Ak are measurable.

(ii) If Ak ⊆ Ak+1 for all k ∈ ω then µ
( ⋃
k∈ω

Ak

)
= lim
k→∞

µ(Ak).

(iii) If Ak ⊇ Ak+1 for all k ∈ ω and µ(A0) <∞ then µ
( ⋂
k∈ω

Ak

)
= lim
k→∞

µ(Ak).
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1.2 Games and the axiom of determinacy

Having discussed some basic measure-theoretic results, we now turn to an introduction to games.
The axiom of determinacy concerns the winning strategies of games, necessitating the introduction
of specific notations and definitions. This section is based on [3, ch. 15&16], where an illustrative
discussion of this subject is provided.

Definition 1.6. The infinite two-player game with perfect information called GA, for some fixed
A ⊆ ωω, is a turn-based game where two players alternate playing natural numbers:

I : a0 a1 a2 . . .
II : b0 b1 b2 . . .

The starting player is denoted as I and the other player as II, with each player having complete
knowledge of all previous moves. The resulting sequence z := ⟨a0, b0, a1, b1, . . .⟩ ∈ ωω is called a
play of GA. Player I wins the game if z ∈ A, and player II wins if z /∈ A. There are no draws.

We want to discuss the concept of strategies in games. Intuitively, a strategy dictates how a player
should respond to the moves of their opponent.

Definition 1.7. A strategy for player I is a map

σ :
⋃
n∈ω

2nω → ω,

and a strategy for player II is a map

τ :
⋃
n∈ω

2n+1ω → ω.

Thus, a strategy σ for player I assigns to every even-length sequence of natural numbers another
natural number, representing the next move by player I. Conversely, a strategy τ for player II
assigns to every odd-length sequence of natural numbers another natural number, representing the
next move by player II.

Definition 1.8. To express that player I follows a strategy σ, we say that a play z = ⟨a0, b0, a1, b1, . . .⟩
of GA is consistent with σ if

∀n ∈ ω : an = σ(⟨a0, b0, a1, b1, . . . , an−1, bn−1⟩).

Similarly, to express that player II follows a strategy τ , we say that z is consistent with τ if

∀n ∈ ω : bn = τ(⟨a0, b0, a1, . . . , bn−1, an⟩).

Now we define a notion to determine how player I would react to a sequence of moves by player II.

Definition 1.9. For α ∈ ω∪{ω} and a (finite or infinite) sequence b = ⟨bn : n ∈ α⟩ ∈ α2 of moves
by player II, we define

σ ∗ b :=

{
⟨a0, b0, a1, b1, . . .⟩ ∈ ωω if α = ω,
⟨a0, b0, a1, b1, . . . , aα⟩ ∈ 2α+1ω if α ∈ ω.

where an := σ(⟨a0, b0, . . . , an−1, bn−1⟩) for all n ∈ ω if α = ω or for all n ≤ α if α ∈ ω, respectively.
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At this point we introduce the concept of a winning strategy and the determinacy of games.

Definition 1.10. A strategy ρ for player I (or player II) is called a winning strategy if every play
of GA consistent with ρ is a win for player I (or player II).

Definition 1.11. A game GA is called determined if there exists a winning strategy for player I or
player II.

Finally, we are able to introduce the axiom of determinacy:

Definition 1.12. The axiom of determinacy (AD) states that for all A ⊆ ωω, the game GA is
determined.
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2 Proving measurability through determinacy

In this chapter, we will rigorously prove that the axiom of determinacy implies that all sets of reals
are Lebesgue measurable. The proofs presented here are derived from Martin’s work in [4], which
itself builds on the ideas proposed by Martin [5] and Vervoort [10].

2.1 Binary representation of real numbers

We first prove that all subsets of [0, 1] are measurable and then generalize it to R. However, as
we are working with games, it is easier to first identify [0, 1] with the set of all {0, 1} sequences of
length ω. This can be achieved by identifying such a {0, 1} sequence as the decimal places of a
binary number in [0, 1]. This function can rigorously be defined as

g : ω2 → [0, 1], x 7→
∞∑
n=0

x(n)2−(n+1).

The following lemma clarifies how the initial segment of a sequence determines its image under g.

Lemma 2.1. For all n ∈ ω and for all p ∈ n2 it holds

g
(
{x ∈ ω2 : x|n = p}

)
=

[ n−1∑
k=0

p(k)2−(k+1) , 2−n +

n−1∑
k=0

p(k)2−(k+1)
]
. (1)

Proof. Let n ∈ ω and p ∈ n2 be arbitrary. For all x ∈ ω2 with x|n = p it holds

0 ≤
∞∑
k=0

x(k)2−(k+1) −
n−1∑
k=0

p(k)2−(k+1) =

∞∑
k=n

x(k)2−(k+1) ≤
∞∑
k=n

2−(k+1) = 2−n,

or equivalently g(x) ∈
[∑n−1

k=0 p(k)2−(k+1), 2−n +
∑n−1
k=0 p(k)2−(k+1)

]
. Thus, we have proved one

inclusion of equation (1).

To show the other inclusion, let y ∈
[∑n−1

k=0 p(k)2−(k+1), 2−n +
∑n−1
k=0 p(k)2−(k+1)

]
be arbitrary.

We recursively define

yk =


p(k) if k < n,

0 if k ≥ n and y −
∑k−1
j=0 yj2

−(j+1) < 2−(k+1),

1 else.

By induction, one can show that

0 ≤ y −
ℓ∑

k=0

yk2−(k+1) ≤ 2−(ℓ+1)

for all ℓ ≥ n. Taking the limit as ℓ→ ∞, we get

g(⟨yk : k ∈ ω⟩) = lim
ℓ→∞

ℓ∑
k=0

yk2−(k+1) = y.
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Note that for n = 0 this lemma implies that g(ω2) = [0, 1], thus g is a well-defined surjection. It is
natural to ask whether g is even bijective, which would mean that each real number in [0, 1] has a
unique binary representation. This is not entirely the case, as, for instance,

g(⟨1, 0, 0, 0, . . .⟩) =
1

2
= g(⟨0, 1, 1, 1, . . .⟩).

However, the next lemma establishes a weaker form of injectivity.

Lemma 2.2. For each t ∈ [0, 1], it holds |g−1({t})| ≤ 2.

Proof. Assume by contradiction that there exists t ∈ [0, 1] such that |g−1({t})| > 2. Choose distinct
elements x, x′, x′′ ∈ g−1({t}). As x ̸= x′, there exists a minimal n ∈ ω with x(n) ̸= x′(n). Without
loss of generality, assume that x(n) = 1 and x′(n) = 0. It holds

0 = g(x′) − g(x) =

∞∑
k=0

x′(k)2−(k+1) −
∞∑
k=0

x(k)2−(k+1)

=

∞∑
k=n

(
x′(k) − x(k)

)
2−(k+1)

=
(
x′(n) − x(n)

)
2−(n+1) +

∞∑
k=1

(
x′(k + n) − x(k + n)

)
2−(k+n+1)

= 2−(n+1)
(
− 1 +

∞∑
k=1

(
x′(k + n) − x(k + n)

)
2−k

)
.

This is equivalent to
∞∑
k=1

(
x′(k + n) − x(k + n)

)
2−k = 1,

which, as x′(k + n) − x(k + n) ≤ 1, is exactly the case if x′(k + n) − x(k + n) = 1 for all k ≥ 1.
Thus we have x(k) = 0 and x′(k) = 1 for all k > n. Since by assumption x(n) = 1 it follows
n = max{k ∈ ω : x(k) = 1}.

Now consider the minimal m ∈ ω such that x(m) ̸= x′′(m). With the same argumentation as above
and the fact that x cannot be 1 at infinitely many points, we get x(k) = 0 and x′′(k) = 1 for all
k > m and further m = max{k ∈ ω : x(k) = 1} = n. Thus, we conclude that x′(k) = x′′(k) for all
k ∈ ω, and consequently x′ = x′′. This contradicts the assumption that x′ and x′′ are distinct.

We can use this result to transfer part (iii) of Fact 1.5 to {0, 1} sequences.

Corollary 2.3. For any sequence ⟨Xn : n ∈ ω⟩ with ω2 ⊇ X0 ⊇ X1 ⊇ . . ., it holds

g
( ⋂
n∈ω

Xn

)
=

⋂
n∈ω

g(Xn).

If, further, g(Xn) is measurable for all n ∈ ω, then g
(⋂

n∈ωXn

)
is measurable with

µ
(
g
( ⋂
n∈ω

Xn

))
= lim
n→∞

µ(g(Xn)).
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Proof. Let y ∈ [0, 1] be arbitrary. Since g is surjective and by Lemma 2.2, there exist (not necessarily
distinct) x0, x1 ∈ ω2 such that {x0, x1} = g−1({y}). We show the following equivalences to prove
the first part. Hereby the only implication which doesn’t follow immediately is (3) ⇒ (4).

y ∈
⋂
n∈ω

g(Xn) ⇔ ∀n ∈ ω : y ∈ g(Xn) (2)

⇔ ∀n ∈ ω :
(
x0 ∈ Xn ∨ x1 ∈ Xn

)
(3)

⇔ ∃i ∈ {0, 1} ∀n ∈ ω : xi ∈ Xn (4)

⇔ y ∈ g
( ⋂
n∈ω

Xn

)
(5)

We prove the implication (3) ⇒ (4) by contraposition: If (4) doesn’t hold, fix i ∈ {0, 1}. We can
find ni ∈ ω such that xi /∈ Xni . But since X0 ⊇ X1 ⊇ . . ., we get xi /∈ Xm for all m ≥ ni. In
particular, for n ≥ max{n0, n1}, we have x0 /∈ Xn and x1 /∈ Xn, and therefore (3) does not hold.

Now assume that g(Xn) is measurable for all n ∈ ω. Then g
(⋂

n∈ωXn

)
=

⋂
n∈ω g(Xn) is

measurable by part (i) of Fact 1.5. Finally, note that g(Xk) ⊇ g(Xk+1) for all k ∈ ω and
µ(g(X0)) ≤ µ([0, 1]) = 1 <∞. Consequently, by part (iii) of Fact 1.5, we get

µ
(
g
( ⋂
n∈ω

Xn

))
= µ

( ⋂
n∈ω

g(Xn)
)

= lim
n→∞

µ(g(Xn)).

2.2 Game setup

Definition 1.12 suggests we need to work with games and the fact that they are determined to prove
that the axiom of determinacy implies the measurability of all subsets of [0, 1].

Since the function g introduced in the previous section is surjective (as explained after Lemma 2.1),
it suffices to show that for all X ⊆ ω2 the set g(X) ⊆ [0, 1] is measurable.

With this established, we now introduce the game to be used for the remainder of the thesis. Fix
some X ⊆ ω2 as well as some v ∈ (0, 1] and consider the following game Gv,X . Player I selects pairs
of rational numbers hn ∈ 2(Q ∩ [0, 1]), while player II selects binary numbers en ∈ {0, 1}:

I : h0 h1 h2 . . .
II : e0 e1 e2 . . .

At this point a short reminder of the notation seems appropriate: We denote pairs of rational
numbers as functions {0, 1} = 2 → Q and we accordingly can write hn = ⟨hn(0), hn(1)⟩.

Now consider a play z = ⟨h0, e0, h1, e1, . . .⟩ of Gv,X . For each n ∈ ω we impose the following rules
each player must follow:

(a) 1
2hn(0) + 1

2hn(1) ≥ vn.

(b) hn(en) ̸= 0.
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where we recursively defined v0 := v and vn+1 := hn(en).

An interpretation of these rules can be found later in this section. The play z is a win for player I
if and only if ⟨en : n ∈ ω⟩ ∈ X. Note that only the moves made by player II are taken into account
when determining the winner.

Both players must follow rule (a) and (b). However, to avoid undefined behavior when discussing
strategies, it can be helpful to consider plays where some rules are violated. For example, if
player I has a strategy σ and some sequence y ∈ ω2 is given, σ ∗ y might be a play where some rules
are broken.

Definition 2.4. We call a play z of Gv,X legal if both players follow the rules (a) and (b).
If z is legal we also call z|n legal for all n ∈ ω.

Note that the values of vn and hn are based on the play z of Gv,X . However, the current notation
doesn’t make this dependence clear, so we introduce the following more robust version:

Definition 2.5. Consider a play z = ⟨h0, e0, h1, e1, . . .⟩ of Gv,X and vn defined as above. For n ∈ ω
we denote

vz|2n = vz|2n+1 := vn and hz|2n+1 := hn.

Remark 2.6. Note that the game Gv,X doesn’t have the form GA introduced in Section 1.2 for some
A ⊆ ωω. However, with some changes in notation it is equivalent to a Game GA.

First note that even without the axiom of choice there is a bijection ω → 2ω and a bijection
ω → Q ∩ [0, 1]. Thus there exists a bijection q : 2(Q ∩ [0, 1]) → ω.
In Section 1.2 the players where only allowed to choose natural numbers, so in Gv,X we will replace
hn with q(hn).

Now consider the set A ⊆ ωω consisting of all plays z of Gv,X where one of the following occurred:

(i) player II played some en /∈ {0, 1}

(ii) player II broke a rule before player I broke a rule

(iii) both players didn’t break rules and z is a win for I

Then the game Gv,X is identical, up to this change of notation, to GA. This approach further
legitimizes considering illegal games as discussed before Definition 2.4

Now we examine how Gv,X plays out. Assume the sequence r := ⟨h0, e0, h1, . . . , en−1⟩ has already
been played. Player II can choose any en ∈ {0, 1} unless player I selects hn with hn(e) = 0 for some
e ∈ {0, 1}, compelling player II to play en := 1 − e by rule (b). In that case rule (a) ensures

1

2
hn(0) +

1

2
hn(1) =

1

2
hn(en) ≥ vn,

leading to vn+1 = hn(en) ≥ 2vn. This potentially is disadvantageous for player I because, according
to rule (a), they can only select a hn+1 containing a zero as long as vn+1 ≤ 1

2 . This scenario
illustrates further that it benefits player I to keep both values of hn as small as rule (a) allows.
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To better understand the purpose of Gv,X we discuss an interpretation of this game: For e ∈ {0, 1}
consider the interval

Ien : = g
({
x ∈ ω2 : x|n+1 = ⟨e0, e1, . . . , en−1, e⟩

})
.

Note that I0n and I1n correspond to the left and right side of I
en−1

n−1 , respectively.
In a play z = r⌢⟨hn, en, hn+1, en+1, . . .⟩, the sequence x = ⟨e0, e1, . . .⟩ determines the winner. By
Lemma 2.1 it holds g(x) ∈ Ienn , allowing player II to place g(x) in either I0n or I1n by choosing the
corresponding en ∈ {0, 1}.

Assume for a moment that g(X) is measurable. Intuitively, µ(g(X)) = µ(g(X))
µ(g(ω2)) assigns a value to

the otherwise undefined ratio |X|
|ω2| . For example, if X = {x ∈ ω2 : x(0) = 0}, then

µ(g(X)) = µ([0, 12 ]) = 1
2 suggests that half of all infinite {0, 1} sequences start with 0.

Under this interpretation, µ
(
g(X) ∩ Ien

)
measures the ratio

|{x ∈ X : x|n+1 = ⟨e0, e1, . . . , en−1, e⟩}|
|ω2|

,

and 2n+1µ
(
g(X) ∩ Ien

)
measures

|{x ∈ X : x|n+1 = ⟨e0, e1, . . . , en−1, e⟩}|
|{x ∈ ω2 : x|n+1 = ⟨e0, e1, . . . , en−1, e⟩}|

.

We interpret the moves hn and en as follows: player I claims lower bounds

2n+1µ
(
g(X) ∩ Ien

)
≥ hn(e)

for each e ∈ {0, 1}. By selecting en ∈ {0, 1}, player II asserts that this bound does not hold for en.
Rule (b) prevents challenges to zero bounds, while rule (a) ensures, if the lower bounds from player
I are correct, that

vn ≤ 1

2

∑
e∈{0,1}

hn(e) ≤ 2n
∑

e∈{0,1}

µ
(
g(X) ∩ Ien

)
= 2nµ

(
g(X) ∩ Ien−1

n−1

)
.

For example assume v ≤ 1
4 and X is the set of all {0, 1} sequences starting with ⟨0, 1⟩. Player I can

always win by selecting h0 = ⟨ 12 , 0⟩ and h1 = ⟨0, 1⟩. Rule (b) forces player II to choose e0 = 0 and
e1 = 1, ensuring player I wins. The move h0 can be interpreted as claiming that at least half the
sequences from ω2 starting with 0 are contained in X, and h1 as claiming that all sequences from
ω2 starting with ⟨0, 1⟩ are contained in X.

We now want to give some intuition for the next two lemmas in the upcoming sections, where g(X)
is not necessarily measurable. If player I has a winning strategy, their lower bounds hn must always
be accurate. For n = 0 this means

v = v0 ≤ 20µ∗(g(X)),

since µ∗(g(X)) represents the largest lower bound for the measure of g(X).

Conversely, if player II has a winning strategy, player I cannot provide accurate lower bounds, not
even for µ∗(g(X)), so

v = v0 ≥ µ∗(g(X)).

9



2.3 Lower bound

Fix some X ⊆ ω2 and v ∈ (0, 1].

Lemma 2.7. If player I has a winning strategy σ for Gv,X , then µ∗(g(X)) ≥ v.

Proof. Assume that player I has winning strategy σ for Gv,X . For α ∈ ω ∪ {ω} we define

Aα := {x ∈ α2 : σ ∗ x is legal},

which is the set of all legal sequences of length α of moves by player II, assuming player I uses
strategy σ. For n ∈ ω we additionally define the set Cn of infinite {0, 1} sequences with initial
segment from An:

Cn := {x ∈ ω2 : x|n ∈ An} =
⊔
p∈An

{x ∈ ω2 : x|n = p}.

By Lemma 2.1 we get that g(Cn) is a union of |An| intervals of length 2−n which pairwise intersect
in at most one point. Thus g(Cn) is measurable with µ(g(Cn)) = |An|2−n.

It holds by definition that Cn ⊇ Cn+1 for all n ∈ ω, and further

Aω = {x ∈ ω2 : ∀n ∈ ω : σ ∗ x|n is legal} =
⋂
n∈ω

Cn.

Using Corollary 2.3 we conclude that g(Aω) is measurable with

µ(g(Aω)) = lim
n→∞

µ(g(Cn)) = lim
n→∞

|An|2−n.

Since σ is a winning strategy, Aω ⊆ X, and thus g(Aω) ⊆ g(X). By Fact 1.4, we conclude

lim
n→∞

|An|2−n = µ(g(Aω)) ≤ µ∗(g(X)). (6)

It is left to prove that v ≤ limn→∞ |An|2−n. To achieve this we investigate the following function:

f :
⋃
n∈ω

n2 → [0, 1], p 7→
{
vσ∗p if p ∈

⋃
n∈ω An,

0 otherwise.

Claim. For all n ∈ ω it holds
2−n

∑
p∈n2

f(p) ≥ v.

Proof. We prove this statement by induction on n. The claim holds for n = 0 as the unique sequence
of length 0 is legal and f maps it to v. Thus

2−0
∑
p∈02

f(p) = v.

Now assume the claim holds for some n ∈ ω. First consider any p ∈ An. For e ∈ {0, 1} with
p⌢⟨e⟩ ∈ An+1 it holds by definition

f(p⌢⟨e⟩) = vσ∗(p
⌢⟨e⟩) = hσ∗p(e).

10



Conversely, for e ∈ {0, 1} with p⌢⟨e⟩ /∈ An player II breakes rule (b) when extending σ ∗ p by e,
and consequently

f(p⌢⟨e⟩) = 0 = hσ∗p(e).

By rule (a) we conclude that for all p ∈ An:

1

2
f(p⌢⟨0⟩) +

1

2
f(p⌢⟨1⟩) =

1

2
hσ∗p(0) +

1

2
hσ∗p(1) ≥ vσ∗p = f(p).

On the other hand, for all p ∈ n2 \An we have p⌢⟨0⟩, p⌢⟨1⟩ /∈ An+1, and thus

1

2
f(p⌢⟨0⟩) +

1

2
f(p⌢⟨1⟩) = 0 ≥ 0 = f(p).

So by the induction hypothesis and the fact that

n+12 = {p⌢⟨0⟩ : p ∈ n2} ⊔ {p⌢⟨1⟩ : p ∈ n2},

we conclude

2−(n+1)
∑

p∈n+12

f(p) = 2−(n+1)
∑
p∈n2

(
f(p⌢⟨0⟩) + f(p⌢⟨1⟩)

)
= 2−n

∑
p∈n2

(1

2
f(p⌢⟨0⟩) +

1

2
f(p⌢⟨1⟩)

)
≥ 2−n

∑
p∈n2

f(p) ≥ v.

⊣Claim

Fix some arbitrary n ∈ ω. Using that f(p) = 0 if p /∈ An and f(p) ≤ 1 for all p ∈ n2 we deduce
from the claim

v ≤ 2−n
∑
p∈n2

f(p) = 2−n
∑
p∈An

f(p) ≤ 2−n
∑
p∈An

1 = |An|2−n.

Taking the limit as n→ ∞ we conclude by equation (6)

v ≤ lim
n→∞

|An|2−n ≤ µ∗(g(X)).

11



2.4 Upper bound

Fix some X ⊆ ω2 and v ∈ (0, 1].

Lemma 2.8. If player II has a winning strategy τ for Gv,X , then µ∗(g(X)) ≤ v.

Proof. Assume that player II has winning strategy τ and fix an arbitrary δ > 0.

We will recursively construct sets An ⊆ n2 consisting of sequences of moves by player II utilizing
strategy τ and functions

ψn : An → {z|2n : z is a play of Gv,X consistent with τ},

which complete these sequences with the moves by player I. For n ∈ ω and p ∈ n2, the function ψn
should select moves for player I that are nearly optimal for them, meaning ψn(p) almost minimizes
vψn(p) among all legal sequences which are consistent with τ where player II makes the moves p.
We will exclude p from An and not even define ψn(p) if we would have vψn(p) = 1 or if there is no
legal ψn(p) consistent with τ .

Define A0 := 02 and let ψ0 be the identity on A0.
Now assume An and ψn are already constructed for some n ∈ ω. Fix p ∈ An and e ∈ {0, 1}. We
extend ψn(p) by a move ape of player I and the move e of player II such that ψn(p)⌢⟨ape, e⟩ fulfills
the criteria for ψn+1(p⌢⟨e⟩) as discussed above. So we define

Spe := {h ∈ 2(Q ∩ [0, 1]) : ψn(p)⌢⟨h⟩ is legal and τ(ψn(p)⌢⟨h⟩) = e},

which is the set of all legal moves by player I such that player II chooses e next when playing
with τ . The next move ape by player I should be chosen from Spe such that vψn(p)

⌢⟨ape ,e⟩ is almost
minimized. This gives rise to the function

up : {0, 1} → [0, 1], m 7→ inf
(
{h(m) : h ∈ Spm} ∪ {1}

)
.

Note that up(e) = 1 means that if player II uses strategy τ , they either never continue a legal
sequence ψn(p)⌢⟨h⟩ with e, or only do so if h(e) = 1. Therefore we set

An+1 := {p⌢⟨m⟩ : m ∈ {0, 1} and up(m) ̸= 1}.

If p⌢⟨e⟩ ∈ An+1, we choose some ape ∈ Spe with ape(e) ≤ up(e)+2−(n+1)δ as the next move of player I.
To address the absence of the axiom of choice, note that there exists a bijection q : 2(Q∩ [0, 1]) → ω,
allowing us to choose the ape with minimal q(ape). Finally, we define

ψn+1(p⌢⟨e⟩) = ψn(p)⌢⟨ape, e⟩,

which meets the criteria for ψn+1 discussed before.

Consider the set
Aω := {x ∈ ω2 : ∀n ∈ ω : x|n ∈ An}.

Note that for each x ∈ Aω we find a play z of Gv,X such that z|2n = ψn(x) for all n ∈ ω. This
z is clearly consistent with the winning strategy τ , and consequently x /∈ X. So, we conclude
Aω ⊆ ω2 \X, or equivalently X ⊆ ω2 \Aω.

12



For α ∈ ω ∪ {ω} consider the set Dα of infinite {0, 1} sequences with initial segment not in Aα:

Dα := {x ∈ ω2 : x|α /∈ Aα} =
⊔

p∈α2\Aα

{x ∈ ω2 : x|α = p}.

For n ∈ ω we get by Lemma 2.1 that g(Dn) is a union of 2n − |An| intervals of length 2−n which
pairwise intersect in at most one point. Thus g(Dn) is measurable with

µ(g(Dn)) = (2n − |An|) · 2−n = 1 − |An|2−n.

Note that by construction D0 ⊆ D1 ⊆ D2 ⊆ . . . and further

X ⊆ ω2 \Aω = Dω = {x ∈ ω2 : ∃n ∈ ω : x /∈ An} =
⋃
n∈ω

Dn.

Therefore g(Dω) = g
(⋃

n∈ωDn

)
=

⋃
n∈ω g(Dn) and we get by Fact 1.5 that g(Dω) is measurable

with
µ(g(Dω)) = lim

n→∞
µ(g(Dn)) = lim

n→∞

(
1 − |An|2−n

)
.

Using Fact 1.4 we deduce from g(X) ⊆ g(Dω) that

µ∗(g(X)) ≤ g(Dω) = lim
n→∞

(
1 − |An|2−n

)
. (7)

To get an estimation of the this limit we investigate the following functions for n ∈ ω:

fn : n2 → [0, 1], p 7→
{
vψn(p) if p ∈ An,
1 otherwise.

Claim 1. For all n ∈ ω and p ∈ An it holds

1

2
up(0) +

1

2
up(1) ≤ vψn(p).

Proof. Assume by contradiction that there exists ε > 0 such that

1

2
up(0) +

1

2
up(1) − ε = vψn(p)).

Then there exists some h : {0, 1} → (Q ∩ [0, 1]) such that for all e ∈ {0, 1}

h(e) ∈
{

{0} if up(e) = 0,
(up(e), up(e) − ε) otherwise.

Note that ψn(p)⌢⟨h⟩ is legal since ψn(p) is legal and

1

2

∑
e∈{0,1}

h(e) ≥ 1

2

∑
e∈{0,1}

(
up(e) − ε

)
= vψn(p).

Now consider e := τ(ψn(p)⌢⟨h⟩). Clearly by the definition of up it holds up(e) ≤ h(e) and therefore
up(e) = h(e) = 0. Consequently ψn(p)⌢⟨h, e⟩ is consistent with τ but violates rule (b), contradicting
the fact that τ is a winning strategy. ⊣Claim
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Claim 2. For all n ∈ ω it holds

2−n
∑
p∈n2

fn(p) ≤ v +
2n − 1

2n
δ.

Proof. We prove this statement by induction on n. The claim holds for n = 0 as f0 map the
sequence of length 0 to v and therefore

2−0
∑
p∈02

f(p) = v = v +
20 − 1

20
δ.

Now assume the statement holds for some n ∈ ω. First consider an arbitrary p ∈ An.
For all e ∈ {0, 1} with p⌢⟨e⟩ ∈ An+1 it holds by definition

fn+1(p⌢⟨e⟩) = vψn(p
⌢⟨e⟩) = ape(e) ≤ up(e) + 2−(n+1)δ.

On the other hand, for all e ∈ {0, 1} with p⌢⟨e⟩ /∈ An+1 it holds

fn+1(p⌢⟨e⟩) = 1 = up(e) ≤ up(e) + 2−(n+1)δ.

So we conclude by Claim 1 that for all p ∈ An we have

1

2

∑
e∈{0,1}

fn+1(p⌢⟨e⟩) ≤ 1

2

∑
e∈{0,1}

(
up(e) + 2−(n+1)δ

)
≤ vψn(p) + 2−(n+1)δ = fn(p) +

δ

2n+1
.

Conversely, for p /∈ An we get p⌢⟨0⟩, p⌢⟨1⟩ /∈ An+1 and thus

1

2

∑
e∈{0,1}

fn+1(p⌢⟨e⟩) =
1

2
+

1

2
≤ 1 +

δ

2n+1
= fn(p) +

δ

2n+1
.

So by the induction hypothesis and the fact

n+12 = {p⌢⟨0⟩ : p ∈ n2} ⊔ {p⌢⟨1⟩ : p ∈ n2},

we conclude

2−(n+1)
∑

p∈n+12

fn+1(p) = 2−n
∑
p∈n2

1

2

∑
e∈{0,1}

fn+1(p⌢⟨e⟩)

≤ 2−n
∑
p∈n2

(
fn(p) +

δ

2n+1

)
≤ v +

2n − 1

2n
δ +

δ

2n+1

= v +
2 · (2n − 1) + 1

2n+1
δ

= v +
2n+1 − 1

2n+1
δ.

⊣Claim
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Fix some arbitrary n ∈ ω. Using that f(p) = 1 if p /∈ An and f(p) ≥ 0 for p ∈ n2 we deduce from
Claim 2

1 − 2−n|An| = 2−n(2n − |An|) = 2−n
∑

p∈n2\An

1 ≤ 2−n
∑
p∈n2

fn(p) ≤ v +
2n − 1

2n
δ ≤ v + δ.

Taking the limit as n→ ∞ we conclude by equation (7)

µ∗(g(X)) ≤ lim
n→∞

(
1 − |An|2−n

)
≤ v + δ.

Since this holds for all δ > 0 the lemma follows.
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2.5 Proving measurability

Having established the key Lemmas 2.7 and 2.8, we can now easily demonstrate, assuming AD
holds, that all subsets of [0, 1] are measurable.

Theorem 2.9. The axiom of determinacy implies that all sets Y ⊆ [0, 1] are measurable.

Proof. We proof this by contraposition. Assume there exists a set Y ⊆ [0, 1] which is not measurable.
Then clearly

0 ≤ µ∗(Y ) < µ∗(Y ) ≤ 1,

and thus there exists v ∈ (0, 1] with

µ∗(Y ) < v < µ∗(Y ). (8)

.
Because g is surjective there exists X ⊆ ω2 with g(X) = Y . If player I has a winning strategy for
Gv,X we get by Lemma 2.7 that v ≤ µ∗(Y ) which contradicts inequality (8). Conversely, if player
II has a winning strategy for Gv,X we get by Lemma 2.8 that µ∗(Y ) ≤ v which also contradicts
inequality (8).
Thus neither player I nor player II has a winning strategy for Gv,X . Consequently the game Gv,X
is not determined, so AD doesn’t hold.

Finally we can generalize this result to all subsets of R.

Corollary 2.10. The axiom of determinacy implies that all sets Y ⊆ R are measurable.

Proof. Let Y ⊆ R be arbitrary. For each n ∈ Z we define Yn := Y ∩ [n, n + 1]. For all n ∈ Z we
conclude from Theorem 2.9 that Yn − n := {y − n : y ∈ Yn} ⊆ [0, 1] is measurable and thus, by the
translation invariance of the Lebesgue measure, Yn is also measurable. Therefore

Y = {y ∈ Y : ∃n ∈ Z (n ≤ y ≤ n+ 1)} =
⋃
n∈Z

Yn

is measurable by Fact 1.5.
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3 Discussion

In this thesis, we have presented a proof that the axiom of determinacy (AD) implies that all sets
of real numbers are Lebesgue measurable, following the approach from Martin’s work ”A simple
proof that determinacy implies Lebesgue measurability.” [4]. The game Gv,X was defined, where
two players attempt to estimate the measure of a set by recursively splitting intervals in half.

Through two extensive lemmas, it was established that if one player has a winning strategy, this
corresponds to an estimation of the inner or outer measure of the set, respectively. Together these
two lemmas yield that under AD, no subsets of [0, 1] can exist with an inner measure that is strictly
smaller than their outer measure, implying that all subsets of [0, 1] are indeed measurable. We then
extended this result to subsets of R by using the translation invariance of the Lebesgue measure.

This method is an accessible approach to proving the statement, in contrast to the more com-
monly employed techniques involving the definition and analysis of analytic sets. However, Martin’s
method does not immediately provide the more general result that every subset of Rm is Lebesgue
measurable.

To address this limitation and extend the result to higher dimensions, we can adapt the game and
the function g as follows: We define

g̃ : ω(m2) → [0, 1]m, x 7→ ⟨
∞∑
n=0

x(n)(k) : k ∈ m⟩

and modify the game Gv,X accordingly. Fix some X ⊆ ω(m2) and v ∈ (0, 1]. Player I plays functions
hn : m2 → Q ∩ [0, 1], while player II plays sequences en ∈ m2.

I : h0 h1 h2 . . .
II : e0 e1 e2 . . .

For each n ∈ ω, the rules are:

(a) 2−m
∑
p∈m2

hn(p) ≥ vn.

(b) hn(en) ̸= 0.

where v0 := v and vn+1 := hn(en) is defined by recursion. A play is a win for I if and only if
⟨en : n ∈ ω⟩ ∈ X.

With these adjustments, Lemma 2.7 and Lemma 2.8 remain valid as shown in Appendix A and B.
Consequently, through analogous arguments as presented in Section 2.5, we can conclude that AD
implies that all subsets of Rm are measurable.

The fact that the axiom of determinacy implies all sets of reals are measurable demonstrates that
an alternative foundation of set theory can improve regularity in certain aspects of measure theory,
avoiding some pathological constructions that arise from the axiom of choice. There are more
fascinating regularity properties, for example the property of Baire, which are also implied by AD.
However, these topics extend beyond the scope of this thesis and are not covered here.
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Appendices

A Lower bound for the multidimensional case

In this appendix we want to prove a generalisation of Lemma 2.7 to sets of Rm.

Fix some X ⊆ ω(m2) and v ∈ (0, 1] and consider the Game Gv,X as defined in section 3.

Lemma A.1. If player I has a winning strategy σ for Gv,X then µ∗(g̃(X)) ≥ v.

Proof. Assume that player I has winning strategy σ. For α ∈ ω ∪ {ω} we define

Aα := {x ∈ α(m2) : σ ∗ x is legal}.

For n ∈ ω we additionally define

Cn := {x ∈ ω(m2) : x|n ∈ An} =
⊔
p∈An

{x ∈ ω(m2) : x|n = p}.

Analogically to Lemma 2.1 we get that g̃(Cn) is a union of |An| multidimensional intervals of
measure (2−n)m which pairwise intersect in some set of measure 0. Thus g̃(Cn) is measurable with

µ(g̃(Cn)) = |An|2−mn.

It holds by definition that Cn ⊇ Cn+1 for all n ∈ ω, and further

Aω = {x ∈ ω(m2) : ∀n ∈ ω : σ ∗ x|n is legal} =
⋂
n∈ω

Cn.

By a modified version of Corollary 2.3 we conclude that g̃(Aω) =
⋂
n∈ω g̃(Xn) is measurable with

µ(g̃(Aω)) = lim
n→∞

µ(g̃(Cn)) = lim
n→∞

|An|2−mn.

Since σ is a winning strategy it holds Aω ⊆ X and thus g̃(Aω) ⊆ g̃(X). By Fact 1.4 we conclude

lim
n→∞

|An|2−mn = µ(g̃(Aω)) ≤ µ∗(g̃(X)). (9)

It is left to prove that v ≤ limn→∞ |An|2−mn. To achieve this we investigate the following function:

f :
⋃
n∈ω

n(m2) → [0, 1], p 7→
{
vσ∗p if p ∈

⋃
n∈ω An,

0 otherwise.
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Claim. For all n ∈ ω it holds
2−mn

∑
p∈n(m2)

f(p) ≥ v.

Proof. We prove this statement by induction on n. The claim holds for n = 0 as the unique sequence
of length 0 is legal and f maps it to v. Thus

2−0
∑

p∈0(m2)

f(p) = v.

Now assume the claim holds for some n ∈ ω. First consider any p ∈ An. For q ∈ m2 with
p⌢⟨q⟩ ∈ An+1 it holds by definition

f(p⌢⟨q⟩) = vσ∗(p
⌢⟨q⟩) = hσ∗p(q).

Conversely, for q ∈ m2 with p⌢⟨q⟩ /∈ An player II breakes rule (b) when extending σ ∗p with q, and
consequently

f(p⌢⟨q⟩) = 0 = hσ∗p(q).

By rule (a) we conclude that for all p ∈ An

2−m
∑
q∈m2

f(p⌢⟨q⟩) = 2−m
∑
q∈m2

hσ∗p(q) ≥ vσ∗p = f(p).

On the other hand, for all p ∈ n(m2) \An we have p⌢⟨q⟩ /∈ An+1 for all q ∈ m2, and thus

2−m
∑
q∈m2

f(p⌢⟨q⟩) = 0 = f(p).

So by the induction hypothesis and the fact

n+1(m2) =
⊔
q∈m2

{p⌢⟨q⟩ : p ∈ n(m2)},

we conclude

2−m(n+1)
∑

p∈n+1(m2)

f(p) = 2−mn
∑

p∈n(m2)

2−m
∑
q∈m2

f(p⌢⟨q⟩)

≥ 2−mn
∑

p∈n(m2)

f(p) ≥ v.

⊣Claim

Fix some arbitrary n ∈ ω. Using that f(p) = 0 if p /∈ An and f(p) ≤ 1 for all p ∈ n(m2) we deduce
from the claim that

v ≤ 2−mn
∑

p∈n(m2)

f(p) = 2−mn
∑
p∈An

f(p) ≤ 2−mn
∑
p∈An

1 = |An|2−mn.

Taking the limit as n→ ∞ we conclude by equation (9)

v ≤ lim
n→∞

|An|2−mn ≤ µ∗(g(X)).
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B Upper bound for the multidimensional case

In this appendix we want to prove a generalisation of Lemma 2.8 to sets of Rm.

Fix some X ⊆ ω(m2) and v ∈ (0, 1] and consider the Game Gv,X as defined in section 3.

Lemma B.1. If player II has a winning strategy τ for Gv,X then µ∗(g̃(X)) ≤ v.

Proof. Assume that player II has winning strategy τ and fix an arbitrary δ > 0.

We will recursively construct sets An ⊆ n(m2) consisting of sequences of moves by player II utilizing
strategy τ and functions

ψn : An → {z|2n : z is a play of Gv,X consistent with τ},

which complete these sequences with the moves by player I. For n ∈ ω and p ∈ n(m2), the func-
tion ψn should select moves for player I that are nearly optimal for them, meaning ψn(p) almost
minimizes vψn(p) among all legal sequences which are consistent with τ where player II makes the
moves p. We will exclude p from An and not even define ψn(p) if we would have vψn(p) = 1 or if
there is no legal ψn(p) consistent with τ .

Define A0 := 0(m2) and let ψ0 be the identity on A0.
Now assume An and ψn are already constructed for some n ∈ ω. Fix p ∈ An and q ∈ m2. We
extend ψn(p) by a move apq of player I and the move q of player II such that ψn(p)⌢⟨apq , q⟩ fulfills
the criteria for ψn+1(p⌢⟨q⟩) as discussed above. So we define

Spq := {h ∈ (m2)(Q ∩ [0, 1]) : ψn(p)⌢⟨h⟩ is legal and τ(ψn(p)⌢⟨h⟩) = q},

which is the set of all legal moves by player I such that player II chooses q next when playing
with τ . The next move apq by player I should be chosen from Spq such that vψn(p)

⌢⟨apq ,q⟩ is almost
minimized. This gives rise to the function

up : m2 → [0, 1], r 7→ inf
(
{h(r) : h ∈ Spr} ∪ {1}

)
.

Note that up(q) = 1 means that if player II uses strategy τ , they either never continue a legal
sequence ψn(p)⌢⟨h⟩ with q or only if h(q) = 1. So we set

An+1 := {p⌢⟨r⟩ : r ∈ m2 and up(r) ̸= 1}.

If p⌢⟨q⟩ ∈ An+1, we choose some apq ∈ Spq with apq(q) ≤ up(q) + 2−m(n+1)δ as the next move of

player I. This can be done without the axiom of choice as (m2)Q is countable. Finally, we define

ψn+1(p⌢⟨q⟩) = ψn(p)⌢⟨apq , q⟩,

which meets the criteria for ψn+1 discussed before.

Consider the set
Aω := {x ∈ ω(m2) : ∀n ∈ ω : x|n ∈ An}.

Note that for each x ∈ Aω we find a play z of Gv,X such that z|2n = ψn(x) for all n ∈ ω. This
z is clearly consistent with the winning strategy τ and consequently x /∈ X. So, we conclude
Aω ⊆ ω(m2) \X or equivalently X ⊆ ω(m2) \Aω.
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For α ∈ ω ∪ {ω} consider the set Dα of infinite m2 sequences with initial segment not in Aα:

Dα := {x ∈ ω(m2) : x|α /∈ Aα} =
⊔

p∈α(m2)\Aα

{x ∈ ω(m2) : x|α = p}.

Analogically to Lemma 2.1 we get that g̃(Dn) is a union of 2mn − |An| multidimensional intervals
of measure (2−n)m which pairwise intersect in some set of measure 0. So g̃(Dn) is measurable with

µ(g̃(Dn)) =
(
2mn − |An|

)
2−mn = 1 − |An|2−mn.

Note that by construction D0 ⊆ D1 ⊆ D2 ⊆ . . . and further

X ⊆ ω(m2) \Aω = Dω = {x ∈ ω(m2) : ∃n ∈ ω : x /∈ An} =
⋃
n∈ω

Dn.

Therefore g̃(Dω) = g̃
(⋃

n∈ωDn

)
=

⋃
n∈ω g̃(Dn) and we get by a modified version of Fact 1.5 that

g̃(Dω) is measurable with

µ(g̃(Dω)) = lim
n→∞

µ(g̃(Dn)) = lim
n→∞

(
1 − |An|2−mn

)
.

Using a modified version of Fact 1.4 we deduce from g̃(X) ⊆ g̃(Dω) that

µ∗(g̃(X)) ≤ g̃(Dω) = lim
n→∞

(
1 − |An|2−mn

)
. (10)

To get an estimation of the this limit we investigate the following functions for n ∈ ω:

fn : n(m2) → [0, 1], p 7→
{
vψn(p) if p ∈ An,
1 otherwise.

Claim 1. For all n ∈ ω and p ∈ An it holds

2−m
∑
q∈m2

up(q) ≤ vψn(p).

Proof. Assume by contradiction that there exists ε > 0 such that

2−m
∑
q∈m2

up(q) − ε = vψn(p)).

Then there exists some h : m2 → (Q ∩ [0, 1]) such that for all q ∈ m2

h(q) ∈
{

{0} if up(q) = 0,
(up(q), up(q) − ε) otherwise.

Note that ψn(p)⌢⟨h⟩ is legal since ψn(p) is legal and

2−m
∑
q∈m2

h(q) ≥ 2−m
∑
q∈m2

(
up(q) − ε

)
= vψn(p).

Now consider q := τ(ψn(p)⌢⟨h⟩). Clearly by the definition of up it holds up(q) ≤ h(q) and
therefore up(q) = h(q) = 0. Consequently, ψn(p)⌢⟨h, q⟩ is consistent with τ but violates rule (b),
contradicting the fact that τ is a winning strategy. ⊣Claim
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Claim 2. For all n ∈ ω it holds

2−mn
∑

p∈n(m2)

fn(p) ≤ v +
2mn − 1

2mn
δ.

Proof. We prove this statement by induction on n. The claim holds for n = 0 as f0 map the
sequence of length 0 to v and therefore

2−m·0
∑

p∈0(m2)

f(p) = v = v +
2m·0 − 1

2m·0 δ.

Now assume the statement holds for some n ∈ ω. First consider an arbitrary p ∈ An.
For all q ∈ m2 with p⌢⟨q⟩ ∈ An+1 it holds by definition

fn+1(p⌢⟨q⟩) = vψn(p
⌢⟨q⟩) = apq(q) ≤ up(q) + 2−m(n+1)δ.

On the other hand, for all q ∈ m2 with p⌢⟨q⟩ /∈ An+1 it holds

fn+1(p⌢⟨q⟩) = 1 = up(q) ≤ up(q) + 2−m(n+1)δ.

So we conclude by Claim 1 that for all p ∈ An we have

2−m
∑
q∈m2

fn+1(p⌢⟨q⟩) ≤ 2−m
∑
q∈m2

(
up(q) + 2−m(n+1)δ

)
≤ vψn(p) +

δ

2m(n+1)
= fn(p) +

δ

2m(n+1)
.

Conversely, for p /∈ An and q ∈ m2, we get p⌢⟨q⟩ /∈ An+1, and thus

2−m
∑
q∈m2

fn+1(p⌢⟨q⟩) = 1 ≤ 1 +
δ

2m(n+1)
= fn(p) +

δ

2m(n+1)
.

So by the induction hypothesis and the fact

n+1(m2) =
⊔
q∈m2

{p⌢⟨q⟩ : p ∈ n(m2)},

we conclude

2−m(n+1)
∑

p∈n+1(m2)

fn+1(p) = 2−mn
∑

p∈n(m2)

2−m
∑
q∈m2

fn+1(p⌢⟨q⟩)

≤ 2−n
∑

p∈n(m2)

(
fn(p) +

δ

2m(n+1)

)
≤ v +

2mn − 1

2mn
δ +

δ

2m(n+1)

= v +
2m · (2mn − 1) + 1

2m(n+1)
δ

≤ v +
2m(n+1) − 1

2m(n+1)
δ.

⊣Claim
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Fix some arbitrary n ∈ ω. Using that f(p) = 1 if p /∈ An and f(p) ≥ 0 for p ∈ n(m2) we deduce
from Claim 2

1 − 2−mn|An| = 2−mn(2mn − |An|) = 2−mn
∑

p∈n(m2)\An

1 ≤ 2−mn
∑

p∈n(m2)

fn(p) ≤ v +
2mn − 1

2mn
δ ≤ v + δ.

Taking the limit as n→ ∞ we conclude by equation (10)

µ∗(g̃(X)) ≤ lim
n→∞

(
1 − |An|2−mn

)
≤ v + δ.

Since this holds for all δ > 0 the Lemma follows.
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