Question 1. (12 points)

Multiple choice questions: only the answer will be evaluated, and exactly one of the options is correct.

(a) (3 points) Let $f_j, f : [0,1] \to [0,\infty)$ be measurable functions (with respect to \mathcal{L}^1) for $j = 1, 2, \ldots$ and suppose that $f_j \to f$ almost everywhere. Which of the following statements is true?

- (A) There exists a measurable subset $A \subset [0,1]$ with $\mathcal{L}^1([0,1] \setminus A) = 0$ such that $f_j \to f$ uniformly in A.
- (B) If $||f_j||_{L^1([0,1])} = 1$ for each j, then $f \in L^1([0,1])$ with $||f||_{L^1([0,1])} = 1$.
- (C) If $0 \le f_1 \le f_2 \le \cdots$ and $f_j \in L^1([0,1])$ for each j, then $f \in L^1([0,1])$.
- (D) If $f_1 \ge f_2 \ge \cdots \ge 0$ and $f_j \in L^1([0,1])$ for each j, then $f \in L^1([0,1])$.

(b) (3 points) Which of the following is true for the interval [0, 1] with respect to the Lebesgue measure?

- (A) Every measurable set is Borel.
- (B) For every Borel set B there exists an open set U containing B with $\mathcal{L}^1(U \setminus B) = 0$.
- (C) For every measurable set A there exists a Borel set B containing A with $\mathcal{L}^1(B \setminus A) = 0$.
- (D) An arbitrary union of measurable sets is measurable.

(c) (3 points) Which of the following implications is false?

- (A) $f \in L^p(\mathbb{R})$ for every $p > 1 \implies f \in L^1(\mathbb{R})$.
- (B) $f \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \implies f \in L^p(\mathbb{R})$ for every $1 < p < \infty$.
- (C) $f \in L^3(\mathbb{R})$ and $g \in L^6(\mathbb{R}) \implies fg \in L^2(\mathbb{R})$.
- (D) $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R}) \implies f * g \in L^1(\mathbb{R})$.

(d) (3 points) We consider the collection of sets $\mathcal{K} := \{ [k, k+1) : k \in \mathbb{Z} \} \subset \mathcal{P}(\mathbb{R})$ and the function $\lambda : \mathcal{K} \to [0, \infty), \lambda([k, k+1)) = 1$. Then we define

$$
\mu: \mathcal{P}(\mathbb{R}) \to [0, \infty], \qquad \mu(A) := \inf \left\{ \sum_j \lambda(K_j) : K_j \in \mathcal{K}, A \subset \bigcup_j K_j \right\}.
$$

Which of the following properties is **not** true?

- (A) μ is a Radon measure.
- (B) The family of μ -measurable sets is a σ -algebra.
- (C) Every μ -measurable function $f : \mathbb{R} \to \mathbb{R}$ takes at most countably many values.
- (D) For every set $A \subset \mathbb{R}, \mathcal{L}^1(A) \leq \mu(A)$.

Question 2. (7 points)

Compute the following limits:

 (a) (3 points)

$$
\lim_{n \to \infty} \int_0^1 \frac{n x^{\frac{2}{3}}}{1 + 4n^2 x^2} \, dx.
$$

(b) (4 points)

$$
\lim_{n\to\infty}\int_{[0,1]\times[0,1]}ny^{nx}e^{-x^2} d\mathcal{L}^2(x,y).
$$

Hint: use the fact that $\int_0^1 t^a dt = \frac{1}{a+1}$ for $a \ge 0$ and reduce the two-dimensional integrals to integrals over an interval.

Question 3. (11 points)

Consider a set $\Omega \subset \mathbb{R}^n$ and a Radon measure μ on Ω . Let $f, f_k : \Omega \to \overline{\mathbb{R}}$, for $k = 1, 2, \ldots$, be μ -summable functions.

(a) (2 points) State what it means for the family $\{f_k\}$ to be uniformly μ -summable.

(b) (4 points) Show that if

$$
\lim_{k \to \infty} \int_{\Omega} |f_k - f| \, d\mu = 0,\tag{\star}
$$

then $f_k \stackrel{\mu}{\to} f$ (that is, the functions converge in measure) and $\{f_k\}$ is uniformly μ -summable. (c) (2 points) Show by means of a counterexample that the converse is not true in general. That is, exhibit a sequence $\{f_k\}$ of μ -summable functions such that $f_k \stackrel{\mu}{\to} f$ and $\{f_k\}$ are uniformly μ -summable, but (\star) does not hold.

(d) (3 points) Suppose that for some $1 < p < \infty$ it holds that $||f_k||_{L^p(\Omega)} \leq 1$ for each k. Then show that the family $\{f_k\}$ is uniformly μ -summable.