Exercise 3.1.

Denote by λ the Lebesgue measure on \mathbb{R} . Let $E \subset [0,1]$ be a Lebesgue measurable set of strictly positive measure, i.e. $\lambda(E) > 0$. Show that for any $0 \le \delta \le \lambda(E)$, there exists a measurable subset of E having measure exactly δ .

Hint: Consider the function $[0,1] \ni t \mapsto \lambda([0,t] \cap E)$.

Exercise 3.2.

Let $\mu: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ be the function

$$\mu(A) := \sqrt{\lambda(A)}$$

for $A \subseteq \mathbb{R}$, where λ denotes the Lebesgue measure.

- (a) Show that μ is a measure.
- (b) \bigstar What is the σ -algebra of μ -measurable sets?

Exercise 3.3.

Recall that the system of elementary sets is defined as

 $\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}.$

- (a) Prove that A is an algebra. To simplify the notation you may assume that n=1.
- (b) \bigstar Show that the volume function vol introduced in the lecture¹ for elementary sets is a pre-measure.

Remark: For $I = I_1 \times ... \times I_n$ an interval in \mathbb{R}^n , its volume is defined by

$$vol(I) = \prod_{k=1}^{n} vol(I_k),$$

where for an interval $I_k \subseteq \mathbb{R}$, $vol(I_k)$ is the length of I_k .

¹Definition 1.3.1 in the Lecture Notes.

Exercise 3.4.

Define \mathcal{A} to be the algebra in \mathbb{R} generated by the half-closed intervals of the form [a,b) for every $-\infty \leq a \leq b \leq \infty$. Note that any element in \mathcal{A} can be expressed as the disjoint union of finitely many intervals of the type described before. Moreover, we define:

$$\eta: \mathcal{A} \to [0, +\infty], \quad \eta(A) := \begin{cases} +\infty & \text{if } A \neq \emptyset, \\ 0 & \text{else.} \end{cases}$$

- (a) Check that η is a pre-measure. Find the Carathéodory-Hahn extension μ of η and the σ -algebra Σ of μ -measurable sets.
- (b) Show that there is an extention $\tilde{\mu}: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ of η such that $\tilde{\mu}|_{\Sigma} \neq \mu$.
- (c) Why is not the existence of $\overline{\mu}$ in contradiction with the uniqueness statement of Theorem 1.2.21 in the Lecture Notes?

Exercise 3.5. \bigstar

Let $\mu: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ be a measure with the following property: there is a real number s > n such that for every $x \in \mathbb{R}^n$ and r > 0,

$$\mu(B(x,r)) \le r^s$$
.

Show that $\mu \equiv 0$. Here $B(x,r) = \{y \in \mathbb{R}^n : |y-x| < r\}$ denotes the open ball with center x and radius r in \mathbb{R}^n .

Exercise 3.6. ♣

Let μ be a measure on \mathbb{R}^n and $A, B_1, B_2, \ldots \subset \mathbb{R}^n$ be such that $A \subseteq \liminf_{k \to \infty} B_k$ and $\sum_{k=1}^{\infty} \mu(B_k) < \infty$. Which of the following statements are true? (a) $\mu(A) > 0$.

- (b) $\mu(A) = 0$.
- (c) A is a measurable set for any choice of μ and $B_1, B_2, \ldots \subset \mathbb{R}^n$.
- (d) Every point of A belongs to infinitely many of the B_k .