

Exercise 3.1.

Denote by λ the Lebesgue measure on R. Let $E \subset [0,1]$ be a Lebesgue measurable set of strictly positive measure, i.e. $\lambda(E) > 0$. Show that for any $0 \le \delta \le \lambda(E)$, there exists a measurable subset of E having measure exactly δ .

Hint: Consider the function $[0, 1] \ni t \mapsto \lambda([0, t] \cap E)$.

Exercise 3.2.

Let $\mu : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ be the function

$$
\mu(A) := \sqrt{\lambda(A)}
$$

for $A \subseteq \mathbb{R}$, where λ denotes the Lebesgue measure.

(a) Show that μ is a measure.

(b) \star What is the σ -algebra of μ -measurable sets?

Exercise 3.3.

Recall that the system of elementary sets is defined as

 $\mathcal{A} := \{ A \subset \mathbb{R}^n \mid A \text{ is the union of finitely many disjoint intervals} \}.$

(a) Prove that A is an algebra. To simplify the notation you may assume that $n = 1$.

(b) \bigstar Show that the volume function vol introduced in the lecture¹ for elementary sets is a pre-measure.

Remark: For $I = I_1 \times \ldots \times I_n$ an interval in \mathbb{R}^n , its volume is defined by

$$
\text{vol}(I) = \prod_{k=1}^{n} \text{vol}(I_k),
$$

where for an interval $I_k \subseteq \mathbb{R}$, vol (I_k) is the length of I_k .

¹Definition 1.3.1 in the Lecture Notes.

Exercise 3.4.

Define A to be the algebra in R generated by the half-closed intervals of the form $[a, b)$ for every $-\infty \le a \le b \le \infty$. Note that any element in A can be expressed as the disjoint union of finitely many intervals of the type described before. Moreover, we define:

$$
\eta: \mathcal{A} \to [0, +\infty], \quad \eta(A) := \begin{cases} +\infty & \text{if } A \neq \emptyset, \\ 0 & \text{else.} \end{cases}
$$

(a) Check that η is a pre-measure. Find the Caratheodory-Hahn extension μ of η and the σ-algebra Σ of µ-measurable sets.

(b) Show that there is an extention $\tilde{\mu} : \mathcal{P}(\mathbb{R}) \to [0,\infty]$ of η such that $\tilde{\mu}|_{\Sigma} \neq \mu$.

(c) Why is not the existence of $\overline{\mu}$ in contradiction with the uniqueness statement of Theorem 1.2.21 in the Lecture Notes?

Exercise 3.5. \star

Let $\mu : \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ be a measure with the following property: there is a real number $s > n$ such that for every $x \in \mathbb{R}^n$ and $r > 0$,

$$
\mu(B(x,r)) \le r^s.
$$

Show that $\mu \equiv 0$. Here $B(x,r) = \{y \in \mathbb{R}^n : |y - x| < r\}$ denotes the open ball with center x and radius r in \mathbb{R}^n .

Exercise 3.6. ♣

Let μ be a measure on \mathbb{R}^n and $A, B_1, B_2, \ldots \subset \mathbb{R}^n$ be such that $A \subseteq \liminf_{k \to \infty} B_k$ and $\sum_{k=1}^{\infty} \mu(B_k) < \infty$. Which of the following statements are true? (a) $\mu(A) > 0$.

- (b) $\mu(A) = 0$.
- (c) *A* is a measurable set for any choice of μ and $B_1, B_2, \ldots \subset \mathbb{R}^n$.
- (d) Every point of A belongs to infinitely many of the B_k .