Exercise 4.1.

Prove that the Lebesgue measure is invariant under translations, reflections and rotations, i.e. under all motions of the form

$$\Phi: \mathbb{R}^n \to \mathbb{R}^n, \quad \Phi(x) = x_0 + Rx,$$

for $x_0 \in \mathbb{R}^n$ and $R \in O(n)$.

Hint: You may use the invariance of the Jordan measure (see Lemma 13.20, Proposition 13.21 and Proposition 13.22 in J. Serra's Lecture Notes)

Exercise 4.2.

Let $V \subseteq \mathbb{R}^n$ be an open set. Then there exists a family \mathcal{S} of disjoint dyadic cubes such that $V = \bigcup_{Q \in \mathcal{S}} Q$.

Hint: You may consider the collection S_0 of all cubes in D_0 which lie entirely in V and, for any $k \geq 1$, the collection S_k of all cubes in D_k which lie in V but which are not subcubes of $S_0, S_1, \ldots, S_{k-1}$.

Exercise 4.3.

Which of the following statements are correct?

- (a) Every noncountable subset of \mathbb{R} has positive measure.
- (b) Every countable subset of \mathbb{R} has outer Jordan measure zero.
- (c) Every countable subset of \mathbb{R} has Lebesgue measure zero.
- (d) Every countable subset of \mathbb{R} is Jordan-measurable.
- (e) Every countable subset of \mathbb{R} has inner Jordan measure zero.
- (f) Every countable subset of \mathbb{R} is a Borel set.

Exercise 4.4.

- (a) Let $A \subset \mathbb{R}$ be a subset with Lebesgue measure $\mathcal{L}^1(A) > 0$. Show that there exists a subset $B \subset A$ which is **not** \mathcal{L}^1 -measurable.
- (b) Find an example of a countable, pairwise disjoint collection $\{E_k\}_k$ of subsets in \mathbb{R} , such that

$$\mathcal{L}^1\Big(\bigcup_{k=1}^{\infty} E_k\Big) < \sum_{k=1}^{\infty} \mathcal{L}^1(E_k).$$

D-MATH Prof. Francesca Da Lio

Analysis III (Measure Theory) Sheet 4

ETH Zürich HS 2024

Exercise 4.5. ★

Show that the open ball $B(x,r) := \{y \in \mathbb{R}^n \mid |y-x| < r\}$ and the closed ball $\overline{B(x,r)} := \{y \in \mathbb{R}^n \mid |y-x| \le r\}$ in \mathbb{R}^n are Jordan measurable with Jordan measure $c_n r^n$, for some constant $c_n > 0$ depending only on n.