Exercise 9.1.

Prof. Francesca Da Lio

D-MATH

Which of the following statements are true?

5 correct answers are enough for the bonus.

(a) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of non-negative measurable functions on \mathbb{R} such that $f_n \to f$ almost everywhere. Then $\lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) dx$ exists and

$$\int_{\mathbb{R}} f(x) \, dx \le \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, dx.$$

(b) There exists a sequence of Lebesgue measurable functions $(f_n)_{n \in \mathbb{N}}$ such that f_n converges to 0 in measure on \mathbb{R} but no subsequence converges uniformly on any subset of positive measure.

(c) Let $f \in L^1([0,1])$.^{*a*} Then for each nonnegative integer $n, x^n f(x) \in L^1([0,1])$.

(d) Let $f \in L^1((0, +\infty))$. Then $\lim_{x\to +\infty} |f(x)| = 0$.

(e) Let $f \in L^1((0, +\infty))$. Then there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \to \infty$ and $\lim_{n \to \infty} x_n f(x_n) = 0$.

(f) There exists a sequence $(f_n)_{n \in \mathbb{N}} \subseteq L^1((0, +\infty))$ such that $|f_n(x)| \leq 1$ for all x and all n, $\lim_{n\to\infty} f_n(x) = 0$ for all x, and $\lim_{n\to\infty} \int_{(0,\infty)} f_n(x) dx = 1$.

(g) There exists a sequence $(f_n)_{n\in\mathbb{N}} \subseteq L^1([0,1])$ such that $f_n \to 0$ pointwise and yet $\int_{[0,1]} f_n(x) dx \to +\infty$.

 $^{a}L^{1}(A) := \{f : A \to \mathbb{R} : \int_{A} |f(x)| dx < \infty\}, \text{ for any } A \subseteq \mathbb{R}.$

Exercise 9.2.

(a) Let $\{f_k\}_{k\in\mathbb{N}}$ be a sequence of μ -measurable functions on a μ -measurable set $\Omega \subset \mathbb{R}^n$. Show that the series $\sum_{k=1}^{\infty} f_k(x)$ converges μ -almost everywhere, if

$$\sum_{k=1}^{\infty}\int_{\Omega}|f_k|d\mu<\infty.$$

(b) Let $\{r_k\}_{k\in\mathbb{N}}$ be an ordering of $\mathbb{Q}\cap[0,1]$ and $(a_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ be such that $\sum_{k=1}^{\infty}a_k$ is absolutely convergent. Show that $\sum_{k=1}^{\infty}a_k|x-r_k|^{-1/2}$ is absolutely convergent for almost every $x\in[0,1]$ (with respect to the Lebesgue measure).

Exercise 9.3.

Find an example of a continuous bounded function $f: [0, \infty) \to \mathbb{R}$ such that $\lim_{x \to \infty} f(x) = 0$ and

$$\int_0^\infty |f(x)|^p dx = \infty \; ,$$

for all p > 0.

Exercise 9.4.

Let $f, g: \Omega \to \overline{\mathbb{R}}$ be μ -summable functions and assume that

$$\int_A f d\mu \leq \int_A g d\mu$$

for all μ -measurable subsets $A \subset \Omega$. Show that $f \leq g \mu$ -almost everywhere. Moreover, conclude that, if

$$\int_A f d\mu = \int_A g d\mu$$

for all μ -measurable subsets $A \subset \Omega$, then $f = g \mu$ -almost everywhere.

Exercise 9.5.

Let $f_n \colon \mathbb{R} \to \overline{\mathbb{R}}$ be Lebesgue measurable functions. Find examples for the following statements.

(a) $f_n \to 0$ uniformly, but not $\int |f_n| dx \to 0$.

- (b) $f_n \to 0$ pointwise and in measure, but neither $f_n \to 0$ uniformly nor $\int |f_n| dx \to 0$.
- (c) $f_n \to 0$ pointwise, but not in measure.

Exercise 9.6.

Let $f:[0,1] \to \mathbb{R}$ be \mathcal{L}^1 -summable. Show that for a set $E \subset [0,1]$ of positive measure it holds that

$$f(x) \le \int_{[0,1]} f(y) \, d\mathcal{L}^1(y)$$

for every $x \in E$.