Exercise 10.1.

Show that a μ -measurable function $f: \Omega \to \mathbb{R}$ is integrable if and only if either $\int_{\Omega} f^+ d\mu < +\infty$ or $\int_{\Omega} f^- d\mu < +\infty$. Furthermore, show that in this case, $\int_{\Omega} f d\mu = \int_{\Omega} f^+ d\mu - \int_{\Omega} f^- d\mu$.

Exercise 10.2.

Which of the following statements are true?

(a) Let $f \in L^1([0,1]) \cap C^1([0,1])$ such that $\lim_{x\to 1^-} f(x) = a \in \mathbb{R}$. Then

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) dx = a^2.$$

(b) Let $\{f_k\}$ be a sequence of nonnegative measurable functions on \mathbb{R} converging uniformly to a function f. Then $\lim_{k\to\infty}\int_{\mathbb{R}}f_k(x)dx$ exists and

$$\int_{\mathbb{R}} f(x)dx \le \lim_{k \to \infty} \int_{\mathbb{R}} f_k(x)dx.$$

(c) Let $f_k:[0,1]\to[0,1]$ be measurable functions for $k=1,2,\ldots$ and suppose that $f_k\to f$ almost everywhere. Then $\lim_{k\to\infty}\int_{[0,1]}f_k(x)dx$ exists and

$$\int_{[0,1]} f(x)dx \le \lim_{k \to \infty} \int_{[0,1]} f_k(x)dx$$

(d) Let f be Lebesgue-summable on \mathbb{R} and $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$ be measurable subsets of \mathbb{R} . Then the limit $\lim_{n\to\infty} \int_{E_n} f(x)dx$ exists.

(e) Let $\{f_n\}$ be a sequence of continuous Lebesgue-summable functions on $[0, \infty)$ which converges uniformly to a Lebesgue-summable function f. Then

$$\lim_{n \to \infty} \int_{[0,\infty)} |f_n(x) - f(x)| dx = 0.$$

Exercise 10.3.

Let $f \in L^1(0,1)$. Compute

$$\lim_{k \to \infty} \int_0^1 k \log \left(1 + \frac{|f(x)|^2}{k^2} \right) dx.$$

Hint: You might want to use the following elementary inequality:

$$\log(1+t) \le 2\sqrt{t} \iff 1+t \le e^{2\sqrt{t}} = 1 + 2\sqrt{t} + 2t + \dots, \quad t \ge 0.$$

Exercise 10.4.

Let $f: \mathbb{R} \to [0, +\infty]$ be \mathcal{L}^1 -measruable. Assume that for all $n \geq 1$,

$$\int_{\mathbb{R}} \frac{n^2}{n^2 + x^2} |f(x)| \, d\mathcal{L}^1(x) \le 1.$$

Show that

$$\int_{\mathbb{R}} |f| \, d\mathcal{L}^1 \le 1.$$

Exercise 10.5.

Compute the limit

$$\lim_{n\to\infty} \int_{[0,n]} \left(1 + \frac{x}{n}\right)^n e^{-2x} dx.$$

Exercise 10.6. ★

Let f_k , f be \mathcal{L}^1 -summable functions on \mathbb{R} which are nonnegative \mathcal{L}^1 -almost everywhere and satisfy the following additional hypotheses:

- $\liminf_{k\to\infty} f_k(x) \ge f(x)$ for \mathcal{L}^1 -a.e. $x \in \mathbb{R}$.
- $\limsup_{k\to\infty} \int_{\mathbb{R}} f_k(x) dx \le \int_{\mathbb{R}} f(x) dx$.

Show that

$$\lim_{k \to \infty} \int_{\mathbb{R}} |f_k(x) - f(x)| \, dx = 0.$$

Exercise 10.7. \bigstar

Let $0 < m < M < \infty$ be two real numbers and let $f: [0,1] \to \mathbb{R}$ be a measurable function satisfying $m \le f(x) \le M$ for almost every $x \in [0,1]$. Show that

$$\left(\int_{[0,1]} f(x) \, dx\right) \left(\int_{[0,1]} \frac{1}{f(x)} \, dx\right) \le \frac{(m+M)^2}{4mM}$$

and characterize all functions for which equality holds.

Exercise 10.8.

For all $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be defined by:

$$f_n(x) = \frac{n\sqrt{x}}{1 + n^2 x^2}.$$

Prove that:

- (a) $f_n(x) \le \frac{1}{\sqrt{x}}$ on (0, 1] for all $n \ge 1$.
- (b) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0.$