Exercise 12.1.

(a) Is the following equality true?

$$\lim_{n \to \infty} \int_0^1 e^{\frac{x^2}{n}} \, dx = \int_0^1 \lim_{n \to \infty} e^{\frac{x^2}{n}} \, dx.$$

(b) The value of the limit

$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{\ln(nx)}{x + x^{2} \ln n} dx$$

is

- (A) 0. (B) 1. (C) e. (D) $+\infty$.
- (c) The value of the limit

$$\lim_{n\to\infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\pi x} dx$$

is

(A) 0. (B)
$$\frac{1}{\pi - 1}$$
. (C) $\frac{2}{\pi - 1}$. (D) 1.

(d) The value of the limit

$$\lim_{n\to\infty} \int_0^\infty \left(\frac{\sin x}{x}\right)^n dx$$

is

(A) 0. (B) 1. (C) 2. (D)
$$+\infty$$
.

(e) For $p, q \geq 1$, let $(f_n)_{n \in \mathbb{N}} \subseteq L^p(\mathbb{R}) \cap L^q(\mathbb{R})$ such that $f_n \to f$ in $L^p(\mathbb{R})$ and $f_n \to g$ in $L^q(\mathbb{R})$ and $f_n(x) \to h(x)$ for almost every $x \in \mathbb{R}$. Consider the following statements:

- (i) f(x) = g(x), for almost every $x \in \mathbb{R}$.
- (ii) f(x) = h(x), for almost every $x \in \mathbb{R}$.

Which of them are true?

- (A) Both (i) and (ii).
- (B) (i) but not (ii).
- (C) (ii) but not (i).
- (D) Neither (i) nor (ii).
- (f) Consider the following statements:

Prof. Francesca Da Lio

- (i) If $f \in L^p([0,1])$ for all $p \in (1,\infty)$, then $f \in L^{\infty}([0,1])$.
- (ii) If $1 \le p < q < +\infty$, then $L^q([1,\infty)) \subseteq L^p([1,\infty))$.

Which of them are true?

- (A) Both (i) and (ii).
- (B) (i) but not (ii).
- (C) (ii) but not (i).
- (D) Neither (i) nor (ii).

Exercise 12.2.

Evaluate

$$\sum_{n=0}^{\infty} \int_0^{\frac{\pi}{2}} \left(1 - \sqrt{\sin x} \right)^n \cos x \, dx.$$

Exercise 12.3.

Let $1 \leq p < \infty$. Show that if $\varphi \in L^p(\mathbb{R}^n)$ and φ is uniformly continuous, then

$$\lim_{|x| \to \infty} \varphi(x) = 0.$$

Exercise 12.4.

Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set.

(a) (Generalized Hölder inequality) Consider $1 \leq p_1, \ldots, p_k \leq \infty$ such that $\frac{1}{r} = \sum_{i=1}^k \frac{1}{p_i} \leq 1$. Show that, given functions $f_i \in L^{p_i}(\Omega, \mu)$ for $i = 1, \ldots, k$, it holds $\prod_{i=1}^k f_i \in L^r(\Omega, \mu)$ and

$$\left\| \prod_{i=1}^k f_i \right\|_{L^r} \le \prod_{i=1}^k \|f_i\|_{L^{p_i}}.$$

- (b) Prove that, if $\mu(\Omega) < +\infty$, then $L^s(\Omega, \mu) \subseteq L^r(\Omega, \mu)$ for all $1 \le r < s \le +\infty$.
- (c) Show that the inclusion in part (b) is strict for all $1 \le r < s \le +\infty$.

Exercise 12.5. \bigstar

Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set with $\mu(\Omega) < +\infty$. Consider a function $f \colon \Omega \to \overline{\mathbb{R}}$ such that $fg \in L^1(\Omega, \mu)$ for all $g \in L^p(\Omega, \mu)$. Prove that $f \in L^q(\Omega, \mu)$ for all $q \in [1, p')$, where $p' = \frac{p}{p-1}$ is the conjugate of p.

ETH Zürich HS 2024

Exercise 12.6.

Let μ be a Radon measure on \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ a μ -measurable set.

(a) Show that any $f \in \bigcap_{p \in \mathbb{N}^*} L^p(\Omega, \mu)$ with $\sup_{p \in \mathbb{N}^*} ||f||_{L^p} < +\infty$ lies in $L^{\infty}(\Omega, \mu)$.

Hint: Tchebychev's inequality.

(b) \bigstar Show that if $\mu(\Omega) < +\infty$, then for any f as in part (a) we have that $||f||_{L^{\infty}} = \lim_{p \to \infty} ||f||_{L^{p}}$.

Exercise 12.7.

Let $(x_{n,m})_{(n,m)\in\mathbb{N}^2}\subset [0,+\infty]$ be a sequence parametrized by \mathbb{N}^2 . Show that

$$\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} x_{n,m} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x_{n,m}.$$

Remark. Given a sequence $(x_{\alpha})_{\alpha \in A} \subset [0, +\infty]$ parametrized by an arbitrary set A, we define

$$\sum_{\alpha \in A} x_{\alpha} := \sup_{F \subset A \text{ finite }} \sum_{\alpha \in F} x_{\alpha}.$$