Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

2.1. MC Questions

(a) Which of the following functions is NOT holomorphic?

A)
$$f(z) = z^6 + 5$$

B)
$$f(z) = x^2 - y^2 + x + i(y + 2xy)$$

C)
$$f(z) = (\cos(x) + i\sin(x))e^{-y}$$

D)
$$f(z) = x - iy + 2$$

(b) Given that the derivative of a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is expressed as a power series

$$f'(z) = \sum_{n=0}^{\infty} b_n z^n,$$

which of the following is, for some value of the constant $C \in \mathbb{C}$, the correct expression for f(z)?

A)
$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{n+1} z^n + C$$

B)
$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{n} z^{n+1} + C$$

C)
$$f(z) = \sum_{n=0}^{\infty} b_n z^{n+1} + C$$

D)
$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{n+1} z^{n+1} + C$$

2.2. Complex numbers and geometry I Denote with $A_y := \{iy : y \in \mathbb{R}\} \subset \mathbb{C}$ the *y*-axis in the complex plane. Describe geometrically the image of A_y under the exponential map $\{e^z : z \in A_y\}$. Repeat the same replacing A_y with the *x*-axis $A_x := \{x : x \in \mathbb{R}\} \subset \mathbb{C}$, the diagonal $D := \{a + ia : a \in \mathbb{R}\} \subset \mathbb{C}$, and the curve $\{\log(a) + ia : a > 0\} \subset \mathbb{C}$.

2.3. Integrating over a triangle Let Ω be an open subset of \mathbb{C} . Suppose that $f: \Omega \to \mathbb{C}$ is holomorphic, and that $f': \Omega \to \mathbb{C}$ is continuous. Show taking advantage of the Green formula ¹ that

$$\int_T f \, dz = 0,$$

September 27, 2024

¹Let C be a positively oriented, piecewise-smooth simple curve in the plane, and let D be the region bounded by C. If $\vec{F} = (F^1, F^2) : \vec{D} \to \mathbb{R}^2$ is a vector field whose components have continuous partial derivatives, then Green's theorem states: $\int_C \vec{F} \cdot dr = \iint_D (\partial_x F^2 - \partial_y F^1) dx dy$.

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Serie 2	Prof. Dr. Ö. Imamoglu

where the integration is along an arbitrary triangle T contained in Ω .

2.4. * Line integral I Compute the following complex line integrals. Here $\Re(z)$ and $\Im(z)$ denote respectively the real and imaginary parts of z.

(a) $\int_{\gamma} (z^2 + z) dz$, when γ is the segment joining 1 to 1 + i.

(b) $\int_{\gamma} \bar{z} dz$, when γ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.

(c) $\int_{\gamma} z^n dz$, when γ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ and $n \in \mathbb{Z}$.

(d) $\int_{\gamma} z^n dz$, when γ is the circle $\{z \in \mathbb{C} : |z - 2| = 1\}$ and $n \in \mathbb{N}$.

(e) $\int_{\gamma} \frac{dz}{(z-a)(z-b)}$ when γ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ and $a, b \in \mathbb{C}$ with |a| < 1 < |b|.

2.5. Line Integral II Is it true that for any $f : \mathbb{C} \to \mathbb{C}$

$$\Re \int_{\gamma} f(z) \, dz = \int_{\gamma} \Re(f(z) \, dz$$

If so prove it, if not give a counterexample.

2.6. * Differentiability

(a) Prove (without using the Cauchy-Riemann equation) that the functions

$$f(z) = \Re(z), \quad g(z) = \Im(z)$$

are not differentiable at any point.

(b) Let $a, b \in \mathbb{C}$. Find all points in \mathbb{C} where af(z) + bg(z) is differentiable.