Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

4.1. MC Questions

- (a) What's the value of $\int_0^{2\pi} e^{e^{it} + it} dt$?
 - A) 2π
 - B) 0
 - C) -2π
 - D) 4π

(b) Given
$$\gamma = \{z \in \mathbb{C} : |z| = 3\}$$
, what's the value of $\int_{\gamma} \frac{z^2 + 2z}{z^2 - 1} dz$?

- A) $6\pi i$
- B) -6π
- C) $4\pi i$
- D) $\frac{3}{2}\pi i$

4.2. An analytic identity Let γ be the counter-clockwise oriented circle of radius r > 0 and center $z_0 \in \mathbb{C}$, and let f be a function which is analytic in all of \mathbb{C} . Show that

$$\int_{\gamma} f(\bar{z}) dz = 2\pi i r^2 f'(\bar{z}_0).$$

4.3. Let r > 0. Show the estimate

$$\left|\int_{\gamma} e^{iz^2} dz\right| \le \frac{\pi(1-e^{-r^2})}{4r},$$

where γ is the curve with $\gamma(t) = re^{it}$, for $0 \le t \le \pi/4$

4.4. \star Converse of Theorem 3.2, Chapter 1 Suppose that a function f is continuous on a plane domain Ω in \mathbb{C} and that $\int_{\gamma} f(z)dz = 0$ for every closed piecewise smooth path on Ω . Show that f has a primitive in Ω .

4.5. \star **Application of Liouville's theorem** Let f and g be entire functions such that, for all $z \in \mathbb{C}$, $\Re(f(z)) \leq k \Re(g(z))$ for some real constant k, independent of z. Prove that there are constants a, b such that f(z) = ag(z) + b