D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Serie 5	HS 2024

Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

5.1. MC Questions

(a) A subset \mathcal{A} of a domain $\Omega \subset \mathbb{C}$ is called *discrete* in Ω if it has no limit point in Ω . For how many of the following pairs (Ω, \mathcal{A}) is it not true that \mathcal{A} is discrete in Ω ?

- (i) $\Omega = \mathbb{C}$. Define $q_n = \sum_{k=1}^n \frac{1}{k}$ and $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \{ q_n e^{ix} : x = \frac{k2\pi}{n} \text{ for some } k \in \mathbb{N} \}.$
- (ii) $\Omega = \mathbb{C}$. Define $q_n = \sum_{k=1}^n \frac{1}{k^2}$ and $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \{ q_n e^{ix} : x = \frac{k2\pi}{n} \text{ for some } k \in \mathbb{N} \}.$

(iii)
$$\Omega = \mathbb{C}, \mathcal{A} = \{\frac{1}{n} : n \in \mathbb{N}^+\}.$$

- (iv) $\Omega = \mathbb{C} \setminus \{0\}, \ \mathcal{A} = \{\frac{1}{n} : n \in \mathbb{N}^+\}.$
- A) 0
- B) 1
- C) 2
- D) 3

(b) Let $f: \Omega \to \mathbb{C}$ be a non-constant holomorphic function on an open set Ω . For $w \in \mathbb{C}$ we define the set

$$E_w := \{ z \in \Omega : f(z) = w. \}$$

Which of the following is true?

- A) E_w is a discrete set in Ω only for w = 0.
- B) E_w is a discrete set in Ω only for $w \neq 0$.
- C) E_w is a discrete set in Ω for every $w \in \mathbb{C}$.
- D) If Ω is connected then E_w is a discrete set in Ω for every $w \in \mathbb{C}$.

5.2. Order of zeros

(a) Find the zeros of the function $z \mapsto \sin(z^2)$ and determine their order.

(b) Let $p(z) := 1 + a_1 z + \cdots + a_n z^n$ be a polynomial and $f(z) := e^z - p(z)$. Clearly $z_0 = 0$ is a zero of the function f(z). Compute $\operatorname{ord}_{z_0} f$, the order of the zero of f at z_0 , as a function of the coefficients of p(z).

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Serie 5	Prof. Dr. Ö. Imamoglu

5.3. * The complex logarithm Let

 $U = \mathbb{C} \setminus \{ z \in \mathbb{C} : \Im(z) = 0, \Re(z) \le 0 \}$

be the open set obtained by removing the negative real axis from the complex plane \mathbb{C} . The complex logarithm is defined in U as

 $\log(z) := \log(|z|) + i \arg(z), \quad z = |z|e^{i \arg(z)},$

where $\arg(z) \in]-\pi, \pi[$. Show that for every $z \in U$

$$\log(z) = \int_{\gamma} \frac{1}{w} \, dw,$$

where γ is the segment connecting 1 to z.

Hint: integrate over a well chosen closed curve containing γ *and passing through* |z|*.*

5.4. A complex ODE Take advantage of the power series expansion around zero to find a holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that f'(z) = zf(z) and f(0) = 1.

5.5. Riemann continuation Theorem Let $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be holomorphic. Show that the following are equivalent:

- 1. There exists $g: \mathbb{C} \to \mathbb{C}$ holomorphic, such that g(z) = f(z) for all $z \neq 0$.
- 2. There exists $g: \mathbb{C} \to \mathbb{C}$ continuous, such that g(z) = f(z) for all $z \neq 0$.
- 3. There exists $\varepsilon > 0$ such that f is bounded in $\dot{B}_{\varepsilon} = \{z \in \mathbb{C} : |z| < \varepsilon\} \setminus \{0\}.$
- 4. $\lim_{z\to 0} zf(z) = 0.$

Hint: to prove $4 \Rightarrow 1$. define h(z) = zf(z) when $z \neq 0$ and h(0) = 0. Analyse the relation between f(z), h(z) and k(z) := zh(z).

5.6. \star Let $D \subset \mathbb{C}$ be the unit disk at the origin. Find all functions f(z) which are holomorphic on D and which satisfy

$$f\left(\frac{1}{n}\right) = n^2 f\left(\frac{1}{n}\right)^3, \quad n = 2, 3, 4, \dots$$