Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

6.1. MC Questions

(a) Consider the sequence of functions $f_n(z) = \frac{z^n}{n+1}$ on $D = \{z \in \mathbb{C} : |z| \le 1\}$. Which of the following is true?

- A) The sequence $\{f_n(z)\}$ converges uniformly on D.
- B) The sequence $\{f_n(z)\}$ converges locally uniformly on D, but not uniformly.
- C) The sequence $\{f_n(z)\}$ converges pointwise but not uniformly on D.
- D) The sequence $\{f_n(z)\}$ does not converge on D.

(b) Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions $f_n \colon \mathbb{C} \to \mathbb{C}$. Which of the following statements is true?

- A) If $\sum_{n \in \mathbb{N}} f_n$ converges uniformly on \mathbb{C} to some f and for each $n \in \mathbb{N}$ there exists some $M_n \in \mathbb{R}^+$ such that $\sup_{z \in \mathbb{C}} |f_n(z)| \ge M_n$, then $\sum_{n \in \mathbb{N}} M_n$ converges.
- B) If $\sum_{n\in\mathbb{N}} f_n$ converges locally uniformly on \mathbb{C} to some f and for each $n \in \mathbb{N}$ there exists some $M_n \in \mathbb{R}^+$ such that $\sup_{z\in\mathbb{C}} |f_n(z)| \ge M_n$, then $\sup_{n\in\mathbb{N}} M_n$ is finite, i.e. the sequence $(M_n)_{n\in\mathbb{N}}$ is bounded.
- C) If for all $n \in \mathbb{N}$ we have that $\sup_{z \in \mathbb{C}} |f_n(z)| = +\infty$, then $\sum_{n \in \mathbb{N}} f_n$ can not converge uniformly to any $f \colon \mathbb{C} \to \mathbb{C}$.
- D) If for all $n \in \mathbb{N}$ we have that $\sup_{z \in \mathbb{C}} |f_n(z)| = +\infty$, then $\sum_{n \in \mathbb{N}} f_n$ converges uniformly to some $f \colon \mathbb{C} \to \mathbb{C}$.

6.2. Show that the following functions exist and are holomorphic on the indicated open sets; furthermore, give a similar expression for their derivatives:

(c)
$$f_1(z) = \sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$$
 on $D_1(0)$
* (b) $f_2(z) = \int_0^1 (1-tz)^4 e^{tz} dt$ on \mathbb{C}
* (c) $f_3(z) = \sum_{n=0}^{\infty} n^2 \exp(2i\pi n^3 z)$ on $H = \{z \in \mathbb{C} \mid \Im(z) > 0\}$

6.3.

(a) Prove that the sequence $f_n(z) = z^n$, $n \ge 1$ converges locally uniformly but not uniformly on $\{z : |z| < 1\}$.

1/2

(b) Let $f : \mathbb{C} \to \mathbb{C}$ be an arbitrary (not necessarily continuous) function and define for $n \in \mathbb{N}$

$$f_n(z) = \begin{cases} f(z), & \text{if } |z| \le n, \\ 0, & \text{if } |z| > n. \end{cases}$$

Show that the sequence (f_n) converges pointwise and locally uniformly to f, and that it converges uniformly to f if and only if $\lim_{|z|\to\infty} f(z) = 0$.

6.4. *

Let f be a holomorphic function on $D = \{z : |z| < 1\}$ with f(0) = 0. Prove that the series $\phi(z) = \sum_{n=1}^{\infty} f(z^n)$ converges locally uniformly on D.

6.5. Weierstrass M-test Let $f_n: A \to \mathbb{C}$ be a sequence of functions and M_n be a sequence of real numbers such that

$$|f_n(z)| \le M_n, \ \forall n \ge 1, \ \forall z \in A \text{ and } \sum_{n=1}^{\infty} M_n \text{ converges.}$$

Prove that $\sum_{n=1}^{\infty} f_n(z)$ converges absolutely and uniformly on A.