Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

7.1. MC Questions

(a) Consider the function $f: z \mapsto \frac{e^z}{e^z-1}$, defined for all $z \in \mathbb{C}$ such that $e^z \neq 1$. Which of the following statements holds?

- A) The function f is holomorphic on $\mathbb{C} \setminus \{0\}$.
- B) The function f has poles and each pole is simple.
- C) The function f has both poles and removable singularities.
- D) The function f has finitely many singularities.
- (b) Which of the following equalities is false?

A)
$$\operatorname{res}_{2i}\left(\frac{1}{z^2+4}\right) = \frac{1}{4i}$$

B) $\operatorname{res}_0\left(\frac{\sin(z)}{z^2}\right) = 1$
C) $\operatorname{res}_0\left(\frac{\cos(z)}{z^2}\right) = 0$
D) $\operatorname{res}_1\left(\frac{1}{z^5-1}\right) = \frac{1}{5!}$

7.2. Schwarz reflection principle Let Ω be open, connected, and symmetric with respect to the *x*-axis (i.e. $z \mapsto \overline{z}$ preserves Ω), and let $f : \Omega \to \mathbb{C}$ be holomorphic. Let $L := \{z \in \Omega : \Im(z) = 0\}$. Note that *L* is non-empty. Prove that $f(\overline{z}) = \overline{f(z)}$ for all $z \in \Omega$ if and only if *f* is real valued on *L*.

Hint: consider g to be the restriction of f to the upper half plane intersected with Ω . 'Reflect' g by imposing $g^*(z) := \overline{g(\overline{z})}$. Argue taking advantage of Morera's Theorem.

7.3. \star **Dense image** Show that the image of a non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is *dense* in \mathbb{C} , that is: for every $z \in \mathbb{C}$ and $\varepsilon > 0$, there exists $w \in \mathbb{C}$ such that $|z - f(w)| < \varepsilon$.

Remark: In fact there is a theorem, called the little Picard Theorem, which asserts that $f(\mathbb{C})$ misses at most one single point of \mathbb{C} !

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Serie 7	Prof. Dr. Ö. Imamoglu

7.4. Let $D = \{z \mid |z| < 1\}$ be the unit disk, and let \overline{D} be its closure. Give an example of a continuous function $f : \overline{D} \to \mathbb{C}$ that is holomorphic on D, but does not have a holomorphic continuation on any domain in \mathbb{C} containing \overline{D} .

7.5. \star **Complex integrals** Compute the following complex integrals taking advantage of the Residue Theorem.

(a)

$$\int_{|z|=2} \frac{e^z}{z^2(z-1)} \, dz.$$

(b)

$$\int_{|z|=1} \frac{1}{z^2(z^2-4)e^z} \, dz.$$

(c)

$$\int_{|z|=1/2} \frac{1}{z \sin(1/z)} \, dz.$$

Hint: Note that the function $\frac{1}{z \sin(1/z)}$ has infinitely many singularities accumulating at 0. Hence you cannot use the residue theorem directly. To go around this problem first prove

$$\int_{|z|=1/2} \frac{1}{z \sin(1/z)} \, dz = \int_{|w|=2} \frac{1}{w \sin(w)} \, dw.$$

(d)

$$\int_{|z|=5} \frac{1}{(z-i)(z+2)(z-4)} \, dz.$$

7.6. The Gamma function Let $Z_{-} := \{0, -1, -2, ...\}$ the set of all non-positive integers, and define for all $\tau \in \mathbb{R}$ the set $U_{\tau} := \{z \in \mathbb{C} : \Re(z) > \tau, z \notin Z_{-}\}$, and $U := \mathbb{C} \setminus Z_{-}$.

(a) Show that the function defined by the complex improper Riemann integral

$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} \, dt$$

is well defined for all $z \in U_1$. (Here $t^{z-1} = \exp((z-1)\log(t)))$.

(b) Prove that Γ is holomorphic in U_1 .

Hint: First show that the functions of the sequence $(\Gamma_n)_{n \in \mathbb{N}}$ given by truncating the integral at height n $(\Gamma_n(z) = \int_0^n e^{-t} t^{z-1} dt)$ are holomorphic. Then, show that $\Gamma_n \to \Gamma$ uniformly in all compact subsets of U_1 .

- (c) Show that $\Gamma(z+1) = z\Gamma(z)$ for all $z \in U_1$.
- (d) Deduce that Γ allows a unique holomorphic extension to U_0 .
- (e) Deduce that Γ allows a unique holomorphic extension to U.