D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Serie 9	HS 2024

Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

9.1. MC Questions

(a) Suppose $f(z) = z^3 + 3z + 2$ and $g(z) = z^3 + 2$. What's the number of zeros of f(z) + g(z) inside |z| = 2?

- A) 0 C) 1
- B) 6 D) 3

(b) Let $f(z) : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function on \mathbb{C} . Which of the following conditions is both necessary **and** sufficient for f(z) to be a rational function?

- A) f(z) has no singularities on \mathbb{C} .
- B) f(z) is holomorphic everywhere except for a finite number of poles.
- C) f(z) has at most a pole at infinity and at most finitely many poles in \mathbb{C} .
- D) f(z) has finitely many singularities.

9.2. Laurent Series A Laurent series centered at $z_0 \in \mathbb{C}$ is a series of the form

$$\sum_{n \in \mathbb{Z}} a_n (z - z_0)^n = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

where $(a_n)_{n \in \mathbb{Z}} \subset \mathbb{C}$. We define $\rho_0, \rho_I \in [0, +\infty]$ the *outer* and *inner* radius of convergence as

$$\rho_0 := \left(\limsup_{n \to +\infty} |a_n|^{1/n} \right)^{-1}, \qquad \rho_I := \limsup_{n \to +\infty} |a_{-n}|^{1/n}.$$

If $\rho_I < \rho_0$, we define the annulus of convergence as

$$\mathcal{A}(z_0, \rho_I, \rho_0) := \{ z \in \mathbb{C} : \rho_I < |z - z_0| < \rho_0 \},\$$

with the convention $\mathcal{A}(z_0, \rho_I, +\infty) = \{z \in \mathbb{C} : \rho_I < |z - z_0|\}$, so that in particular $\mathcal{A}(z_0, 0, +\infty) = \mathbb{C} \setminus \{z_0\}.$

 $1/_{3}$

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Serie 9	Prof. Dr. Ö. Imamoglu

(a) Show that if $\rho_0 > 0$, then the series

$$f_0(z) := \sum_{n=0}^{+\infty} a_n (z - z_0)^n, \quad z \in \mathcal{D}_0(z_0, \rho_0) := \{ z \in \mathbb{C} : |z - z_0| < \rho_0 \},$$

converges absolutely and uniformly on compact sets. Show that if $\rho_I < +\infty$, then the series

$$f_I(z) := \sum_{n=1}^{+\infty} a_{-n}(z - z_0)^{-n}, \quad z \in \mathcal{D}_I(z_0, \rho_I) := \{ z \in \mathbb{C} : \rho_I < |z - z_0| \},\$$

converges absolutely and uniformly on compact sets.

(b) Show that a Laurent series is divergent for any z satisfying $|z - z_0| > \rho_0$ or $|z - z_0| < \rho_I$.

(c) Deduce that the full Laurent series

$$f(z) := \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$$

defines an analytic function in $\mathcal{A}(z_0, \rho_I, \rho_0)$, and its coefficients are related to f by the formula

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} \, dz,$$

for any $n \in \mathbb{Z}$ and $r \in (\rho_I, \rho_0)$.

9.3. Meromorphic functions Recall the definition of $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$.

(a) Let $f : \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Show that f has at most countably many poles. (b) Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be meromorphic on $\hat{\mathbb{C}}$. Show that f has at most finitely many poles.

(c) Deduce that if $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is meromorphic on $\hat{\mathbb{C}}$, than it is a rational function.

9.4. * Generalization of the Argument Principle

(a) Let $\Omega \subset \mathbb{C}$ open, $z_0 \in \Omega$ and r > 0 such that $\overline{D}(z_0, r) = \{z \in \mathbb{C} : |z - z_0| \leq r\} \subset \Omega$. Suppose that $f : \Omega \to \mathbb{C}$ is homolorphic and that $f(z) \neq 0$ on the circle $\partial D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| = r\}$. Show that for any holomorphic function $\varphi : \Omega \to \mathbb{C}$ we have that

$$\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f'}{f} \varphi \, dz = \sum_{w \in D(z_0,r): f(w)=0} (\operatorname{ord}_w f) \varphi(w).$$

2/3

(b) Compute

$$\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz$$

9.5. \star **Application of Rouché Theorem¹** Let f(z) be a holomorphic function inside the unit disk |z| < 1, with the Taylor series expansion:

$$f(z) = \sum_{n=0}^{\infty} c_n z^n.$$

Suppose f(z) is continuous on the closed unit disk and that it has exactly *m* zeros (counted with multiplicity) inside |z| < 1. Prove that:

$$\min_{|z|=1} |f(z)| \le |c_0| + |c_1| + \dots + |c_m|.$$

¹Recall: Let $f, g: \Omega \to \mathbb{C}$ holomorphic and γ a closed, simple curve in Ω such that its interior lies in Ω . If |f(z)| > |g(z)| for all $z \in \gamma$, then f and f + g have the same number of zeros in the interior of γ .