Exercises with $a \star a$ re eligible for bonus points. Exactly one answer to each MC question is correct.

9.1. MC Questions

(a) Suppose $f(z) = z^3 + 3z + 2$ and $g(z) = z^3 + 2$. What's the number of zeros of $f(z) + q(z)$ inside $|z| = 2$?

- A) 0 C) 1
- B) 6 D) 3

(b) Let $f(z): \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function on \mathbb{C} . Which of the following conditions is both necessary **and** sufficient for $f(z)$ to be a rational function?

- A) $f(z)$ has no singularities on \mathbb{C} .
- B) $f(z)$ is holomorphic everywhere except for a finite number of poles.
- C) $f(z)$ has at most a pole at infinity and at most finitely many poles in \mathbb{C} .
- D) *f*(*z*) has finitely many singularities.

9.2. Laurent Series A *Laurent series* centered at $z_0 \in \mathbb{C}$ is a series of the form

$$
\sum_{n\in\mathbb{Z}} a_n(z-z_0)^n = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \ldots
$$

where $(a_n)_{n\in\mathbb{Z}} \subset \mathbb{C}$. We define ρ_0 , $\rho_I \in [0, +\infty]$ the *outer* and *inner* radius of convergence as

$$
\rho_0 := \left(\limsup_{n \to +\infty} |a_n|^{1/n} \right)^{-1}, \qquad \rho_I := \limsup_{n \to +\infty} |a_{-n}|^{1/n}.
$$

If $\rho_I < \rho_0$, we define the *annulus of convergence* as

$$
\mathcal{A}(z_0, \rho_I, \rho_0) := \{ z \in \mathbb{C} : \rho_I < |z - z_0| < \rho_0 \},
$$

with the convention $\mathcal{A}(z_0, \rho_I, +\infty) = \{z \in \mathbb{C} : \rho_I \langle z - z_0 \rangle\}$, so that in particular $\mathcal{A}(z_0, 0, +\infty) = \mathbb{C} \setminus \{z_0\}.$

1/[3](#page-2-0)

(a) Show that if $\rho_0 > 0$, then the series

$$
f_0(z) := \sum_{n=0}^{+\infty} a_n (z - z_0)^n, \quad z \in \mathcal{D}_0(z_0, \rho_0) := \{ z \in \mathbb{C} : |z - z_0| < \rho_0 \},
$$

converges absolutely and uniformly on compact sets. Show that if $\rho_I < +\infty$, then the series

$$
f_I(z) := \sum_{n=1}^{+\infty} a_{-n}(z - z_0)^{-n}, \quad z \in \mathcal{D}_I(z_0, \rho_I) := \{ z \in \mathbb{C} : \rho_I < |z - z_0| \},
$$

converges absolutely and uniformly on compact sets.

(b) Show that a Laurent series is divergent for any *z* satisfying $|z - z_0| > \rho_0$ or $|z - z_0| < \rho_I$.

(c) Deduce that the full Laurent series

$$
f(z) := \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n
$$

defines an analytic function in $\mathcal{A}(z_0, \rho_I, \rho_0)$, and its coefficients are related to f by the formula

$$
a_n = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz,
$$

for any $n \in \mathbb{Z}$ and $r \in (\rho_I, \rho_0)$.

9.3. Meromorphic functions Recall the definition of $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}.$

(a) Let $f: \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Show that f has at most countably many poles.

(b) Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be meromorphic on $\hat{\mathbb{C}}$. Show that *f* has at most finitely many poles.

(c) Deduce that if $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is meromorphic on $\hat{\mathbb{C}}$, than it is a rational function.

9.4. *⋆* **Generalization of the Argument Principle**

(a) Let $\Omega \subset \mathbb{C}$ open, $z_0 \in \Omega$ and $r > 0$ such that $\overline{D}(z_0, r) = \{z \in \mathbb{C} : |z - z_0| \leq$ $r \nbrace \subset \Omega$. Suppose that $f : \Omega \to \mathbb{C}$ is homolorphic and that $f(z) \neq 0$ on the circle $\partial D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| = r\}.$ Show that for any holomorphic function $\varphi : \Omega \to \mathbb{C}$ we have that

$$
\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f'}{f} \varphi dz = \sum_{w \in D(z_0,r): f(w)=0} (\text{ord}_w f) \varphi(w).
$$

2/[3](#page-2-0)

(b) Compute

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz
$$

9.5. \star **Application of Rouché Theorem^{[1](#page-2-1)}** Let $f(z)$ be a holomorphic function inside the unit disk $|z|$ < 1, with the Taylor series expansion:

$$
f(z) = \sum_{n=0}^{\infty} c_n z^n.
$$

Suppose $f(z)$ is continuous on the closed unit disk and that it has exactly *m* zeros (counted with multiplicity) inside $|z| < 1$. Prove that:

$$
\min_{|z|=1} |f(z)| \le |c_0| + |c_1| + \cdots + |c_m|.
$$

¹Recall: Let $f, g: \Omega \to \mathbb{C}$ holomorphic and γ a closed, simple curve in Ω such that its interior lies in Ω . If $|f(z)| > |g(z)|$ for all $z \in \gamma$, then *f* and $f + g$ have the same number of zeros in the interior of γ .