Exercises with a \star are eligible for bonus points. Exactly one answer to each MC question is correct.

10.1. Multiple Choice

(a) Let f be a holomorphic function on the closed unit disk $\overline{D} = \{z \in \mathbb{C} : |z| \leq 1\}$. Consider the relationship between the location of the minimum modulus of |f| and whether f has zeroes inside D. Which of the following statements is **true**?

- A) If f has zeroes inside D, then the minimum modulus of |f| is attained on the boundary ∂D .
- B) If f has no zeroes inside D, then the minimum modulus of |f| is attained on the boundary ∂D .
- C) If the minimum modulus of |f| is attained on the boundary ∂D , then f has zeroes inside D.
- D) If the minimum modulus of |f| is attained on the boundary ∂D , then f has no zeroes inside D.
- (b) Which of the following sets is not simply connected?
- A) $\{ z = x + iy \in \mathbb{C} \mid 0 < y < x^2 \text{ or } x = 0 \}$
- B) $\mathbb{C} \setminus \{re^{i\theta} : r > 0, \theta = \pi/4\}$
- C) $\{z = x + iy \in \mathbb{C} \mid |x| < 1, |y| < 1\}$
- D) $\{z \in \mathbb{C} \mid |z| > 1\}$

10.2. Laurent Series II Let $0 \le s_1 < r_1 < r_2 < s_2$, and set $U = \mathcal{A}(0, s_1, s_2)$ and $V = \mathcal{A}(0, r_1, r_2)$ (like in Exercise 9.1). Denote with γ_1 and γ_2 the circles of radius r_1 and r_2 , respectively, positively oriented. Let $f : U \to \mathbb{C}$ be a general holomorphic function.

(a) Show that the functions

$$g_1(z) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w-z} \, dw, \quad \text{for } |z| > r_1,$$

and

$$g_2(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(w)}{w-z} \, dw, \quad \text{for } |z| < r_2,$$

are well defined and holomorphic.

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Serie 10	Prof. Dr. Ö. Imamoglu

(b) Let γ be the closed curve obtained by going along γ_2 starting at r_2 , then along the segment joining r_2 to r_1 , then along $-\gamma_1$, and finally back via the segment joining r_1 to r_2 . Let $z_0 \in V$ and r > 0 small enough such that $\sigma = \{z \in \mathbb{C} : |z - z_0| = r\}$ is in V. Explain why σ and γ are homotopic in U.

(c) Show that $f = g_2 - g_1$ in V.

(d) Deduce that f can be represented as a Laurent serie, meaning: there exists a sequence $(a_n)_{n \in \mathbb{Z}}$ such that the series $\sum_{n \geq 1} a_n z^n$ and $\sum_{n \geq 1} a_{-n} z^{-n}$ are absolutely convergent in V, and satisfy

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$
, in V.

10.3. Complex vs Real Is it true that if $u, v : \mathbb{C} \to \mathbb{R}$ are smooth and open maps, then f = u + iv is open? Answer from the perspective of the Open Mapping Theorem.

10.4. Maps preserving orthogonality Let $\Omega \in \mathbb{R}^2$ open, and $f : \Omega \to \mathbb{R}^2$ smooth. Show that if f is orientation preserving ¹ and sends curves intersecting orthogonally to curves intersecting orthogonally, then f is holomorphic (by identifying \mathbb{R}^2 with \mathbb{C}).

10.5. \star Let A be a square centered at the origin. Denote by s one arbitrarily fixed side of A. Let $f : A \to \mathbb{C}$ be holomorphic on the interior of A and continuous on the boundary of A, such that f(z) = 0 for all $z \in s$. Prove that f = 0 on A.

10.6. \star **Multiple Ways** Let f be a holomorphic function on the closed unit disk $\overline{D} = \{z \in \mathbb{C} : |z| \le 1\}$. This exercise asks you to prove that

$$\max_{|z|=1} \left| f(z) - \frac{e^z}{z} \right| \ge 1$$

in **two** out of the three following ways:

- (a) prove the claim using the Maximum Principle;
- (b) prove the claim using Rouché's Theorem;
- (c) prove the claim using Cauchy's Integral Formula.

 $^{^1\}mathrm{That}$ is the determinant of its Jacobian is positive.