Exactly one answer to each MC question is correct.

12.1. MC Questions

- (a) Suppose f is a conformal map from a simply connected region $\Omega \subset \mathbb{C}$ to the unit disc \mathbb{D} , and $f(z_0) = 0$. What condition determines the uniqueness of f?
 - A) f has a constant second derivative.
 - B) $f'(z_0) > 0$.
 - C) f extends to a continuous bijection on $\partial\Omega$.
 - D) f maps all boundary points of Ω to distinct points on $\partial \mathbb{D}$.
- (b) Let log be the principal branch of the logarithm, and γ the positively oriented arc $\{e^{it}: t \in [0, \pi/2]\}$. What is the value of

$$\int_{\gamma} \log(z^2) \, dz?$$

A) 2i

C) $\pi + 2 - i$

B) $\pi - 2 + 2i$

- D) $2 2i \pi$
- 12.2. Holomorphic injections Let $f: \mathbb{C} \to \mathbb{C}$ be an holomorphic injection.
- (a) Let $g: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be defined as g(z) := f(1/z). Show that g has no essential singularity at zero. Argue by contradiction taking advantage of the Theorem of Casorati-Weierstrass ¹.
- (b) Taking advantage of the Laurent series of f and g, prove that f is in fact a polynomial.
- (c) Show that f is of the form f(z) = az + b for some $a, b \in \mathbb{C}$.
- **12.3. Estimates on the modulus** Suppose that f is holomorphic on the upper half plane $\mathbb{H} := \{z \in \mathbb{C} : \Im(z) > 0\}, \ f(i) = 0, \ \text{and that} \ |f(z)| \le 1 \ \text{for all} \ z \in \mathbb{H}.$ How big can |f(2i)| be under these conditions?

¹Recall: If $f: B(a,R) \setminus \{a\} \to \mathbb{C}$ holomorphic has an essential singularity in a, then for all 0 < r < R, $f(B(a,r) \setminus \{a\})$ is dense in \mathbb{C} . (Here $B(w,\rho) := \{z \in \mathbb{C} : |z-w| < \rho\}$).

12.4. Schwarz-Pick's Lemma Denote with $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk in \mathbb{C} , and suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic. Prove that for all $z \in \mathbb{D}$

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Remark: note that the above expression takes the nicer form: $|f'(a)| \leq \frac{1-|b|^2}{1-|a|^2}$, for all $a, b \in \mathbb{D}$ such that f(a) = b.

12.5. Symmetries of the Riemann mapping Let $\Omega \subset \mathbb{C}$ be a non-empty, simply connected domain symmetric with respect to the real axis $(\{\bar{z}:z\in\Omega\}=\Omega)$. For $z_0\in\Omega$ real, denote with $F:\Omega\to\mathbb{D}$ the unique conformal map given by the Riemann Mapping Theorem, so that $F(z_0)=0$ and $F'(z_0)>0$. Prove that

$$\overline{F(\bar{z})} = F(z),$$

for all $z \in \Omega$.

Hint: take advantage of Exercise 7.2. on the Schwarz reflection principle.