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1. Multiple Choice Questions Exactly one answer to each MC question is correct.

(a) Which of the following is not enough to conclude that f is constant?

⃝ Ω = D and f(x) = π for all x ∈ (−1, 1).

⃝ Ω = C and f(C) ⊂ D.

⃝ Ω = C and |f(z)| < log(1 + |z|) for |z| > 2024.

⃝ Ω = C \ {0} and f(1/n) = 0 for all n ∈ N.

(b) Which of the following statements is not correct?

⃝ If f has an essential singularity at z0 = 0, then for every w ∈ C, there exists a
sequence (zn) in the image of f such that f(zn) → 0 and zn → w.

⃝
∫

|z|=1
1

z(cos(z))2 dz = 2πi.

⃝ f(z) = (sin(z))3

z3(z+5) has simple poles at z = 0 and z = −5.

⃝ If f and g both have a zero at z0 of order 5, then the function fg has a zero at
z0 of order 10.

(c) Which Ω ⊂ C is not biholomorphic to C \ [0, +∞)?

⃝ Ω = {z ∈ C : ℑ(z) > ℜ(z)2}.

⃝ Ω = C.

⃝ Ω = {z ∈ C : ℜ(z) ∈ (−1, 1)}.

⃝ Ω = {z ∈ C : |z + i| < 2}.

(d) Let f(z) = z6 + 7z3 − 2z2 + 3. How many zeroes does f have inside the open
unit disk D?

⃝ f has exactly 3 zeroes in D.

⃝ f has exactly 4 zeroes in D.

⃝ f has exactly 5 zeroes in D.

⃝ f has exactly 6 zeroes in D.

(e) In which open set does the following map define a holomorphic function?

f(z) =
∑
n≥1

(
2i cos(πn)

)4n
z−2n.

⃝ {z ∈ C : 4 < |z|}.
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⃝ {z ∈ C : 2 < |z|}.

⃝ {z ∈ C : 0 < |z| < 2}.

⃝ {z ∈ C : 0 < |z| <
√

2}.

(f) Which formula does not hold for every non-constant holomorphic function f :
C → C \ {0}?

⃝
∫

|z|=1 sin(f(z)2) dz = 0.

⃝ 1
2πi

∫
|z|=1

1
f(z)z2 dz = − f ′(0)

f(0)2 .

⃝ 1
2πi

∫
|z|=1

1
f(z)−f(0) dz = resz=0

1
f
.

⃝
∫

|z|=1
f ′(z)
f(z) dz = 0.

2. Open Question Consider the meromorphic function f(z) = z2

sin(z) cos(iz) , and the
curve γ as in the following figure:

−iπ/2

iπ/2

π−π

(a) Find all zeroes and poles of f and their order.

(b) Compute the integral
∫

γ f dz.

3. Open Question Show that

1
2π

∫ 2π

0
ecos(θ) dθ = 1

2πi

∫
|z|=1

e(z+z−1)/2

z
dz =

+∞∑
n=0

( 1
2nn!

)2
.

Hint: take advantage of the series representation of the exponential: ew = ∑+∞
n=0

wn

n! .

4. Open Question Let f be a holomorphic map of the unit disc D = {z ∈ C : |z| < 1}
onto itself and such that f(0) = 0. Show that

|f(z) + f(−z)| ≤ 2|z|2,
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for all z ∈ D.

Recall Schwarz Lemma: Let f : D → D analytic, f(0) = 0. Then, |f ′(0)| ≤ 1,
|f(z)| ≤ |z|, ∀z ∈ D.

5. Open Question Let f : D → Ĉ be any function, and suppose that g = f 2 and
h = f 3 are meromorphic functions. Let Zf , Zg, Zh and Pf , Pg, Ph the set of zeros
and poles of f , g, h respectively without taking into account their multiplicity.

(a) Show that f is meromorphic in D.

(b) Determine all poles and zeros of f and their orders in terms of the poles and
zeros of h and g. Show that Zf = Zg = Zh and Pf = Pg = Ph. What can you say
about the orders of the poles and zeros?

(c) Show that if h is holomorphic in D the same holds for f .
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