1. Multiple Choice Questions Exactly one answer to each MC question is correct.

- (a) Which of the following is **not** enough to conclude that f is constant?
 - $\bigcirc \Omega = \mathbb{D}$ and $f(x) = \pi$ for all $x \in (-1, 1)$.
 - $\bigcirc \Omega = \mathbb{C} \text{ and } f(\mathbb{C}) \subset \mathbb{D}.$
 - $\bigcirc \Omega = \mathbb{C}$ and $|f(z)| < \log(1 + |z|)$ for |z| > 2024.
 - $\bigcirc \Omega = \mathbb{C} \setminus \{0\}$ and f(1/n) = 0 for all $n \in \mathbb{N}$.
- (b) Which of the following statements is **not** correct?
 - \bigcirc If f has an essential singularity at $z_0 = 0$, then for every $w \in \mathbb{C}$, there exists a sequence (z_n) in the image of f such that $f(z_n) \to 0$ and $z_n \to w$.
 - $\bigcirc \int_{|z|=1} \frac{1}{z(\cos(z))^2} dz = 2\pi i.$
 - $\bigcirc f(z) = \frac{(\sin(z))^3}{z^3(z+5)}$ has simple poles at z = 0 and z = -5.
 - \bigcirc If f and g both have a zero at z_0 of order 5, then the function fg has a zero at z_0 of order 10.
- (c) Which $\Omega \subset \mathbb{C}$ is not biholomorphic to $\mathbb{C} \setminus [0, +\infty)$?

$$\bigcirc \ \Omega = \{ z \in \mathbb{C} : \Im(z) > \Re(z)^2 \}.$$

$$\bigcirc \Omega = \mathbb{C}.$$

$$\bigcirc \ \Omega = \{ z \in \mathbb{C} : \Re(z) \in (-1,1) \}.$$

$$\bigcirc \ \Omega = \{ z \in \mathbb{C} : |z+i| < 2 \}.$$

(d) Let $f(z) = z^6 + 7z^3 - 2z^2 + 3$. How many zeroes does f have inside the open unit disk \mathbb{D} ?

- $\bigcirc f$ has exactly 3 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 4 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 5 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 6 zeroes in $\mathbb{D}.$
- (e) In which open set does the following map define a holomorphic function?

$$f(z) = \sum_{n \ge 1} (2i\cos(\pi n))^{4n} z^{-2n}$$

 $\bigcirc \{z \in \mathbb{C} : 4 < |z|\}.$

- $\bigcirc \{z \in \mathbb{C} : 2 < |z|\}.$
- $\bigcirc \{z \in \mathbb{C} : 0 < |z| < 2\}.$
- $\bigcirc \ \{z \in \mathbb{C} : 0 < |z| < \sqrt{2}\}.$

(f) Which formula does **not** hold for every non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$?

 $\bigcirc \int_{|z|=1} \sin(f(z)^2) \, dz = 0.$

$$\bigcirc \ \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{f(z)z^2} dz = -\frac{f'(0)}{f(0)^2}.$$

 $\bigcirc \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{f(z)-f(0)} dz = \operatorname{res}_{z=0} \frac{1}{f}.$

$$\bigcirc \int_{|z|=1} \frac{f'(z)}{f(z)} dz = 0$$

2. Open Question Consider the meromorphic function $f(z) = \frac{z^2}{\sin(z)\cos(iz)}$, and the curve γ as in the following figure:

- (a) Find all zeroes and poles of f and their order.
- (b) Compute the integral $\int_{\gamma} f dz$.
- 3. Open Question Show that

$$\frac{1}{2\pi} \int_0^{2\pi} e^{\cos(\theta)} d\theta = \frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \frac{e^{(z+z^{-1})/2}}{z} dz = \sum_{n=0}^{+\infty} \left(\frac{1}{2^n n!}\right)^2.$$

Hint: take advantage of the series representation of the exponential: $e^w = \sum_{n=0}^{+\infty} \frac{w^n}{n!}$.

4. Open Question Let f be a holomorphic map of the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ onto itself and such that f(0) = 0. Show that

$$|f(z) + f(-z)| \le 2|z|^2,$$

for all $z \in \mathbb{D}$.

Recall Schwarz Lemma: Let $f : \mathbb{D} \to \mathbb{D}$ analytic, f(0) = 0. Then, $|f'(0)| \leq 1$, $|f(z)| \leq |z|, \forall z \in \mathbb{D}$.

5. Open Question Let $f : \mathbb{D} \to \hat{\mathbb{C}}$ be **any** function, and suppose that $g = f^2$ and $h = f^3$ are meromorphic functions. Let Z_f , Z_g , Z_h and P_f , P_g , P_h the set of zeros and poles of f, g, h respectively without taking into account their multiplicity.

(a) Show that f is meromorphic in \mathbb{D} .

(b) Determine all poles and zeros of f and their orders in terms of the poles and zeros of h and g. Show that $Z_f = Z_g = Z_h$ and $P_f = P_g = P_h$. What can you say about the orders of the poles and zeros?

(c) Show that if h is holomorphic in \mathbb{D} the same holds for f.