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1. Multiple Choice Questions Exactly one answer to each MC question is correct.

(a) Which of the following is not enough to conclude that f is constant?

⃝ Ω = D and f(x) = π for all x ∈ (−1, 1).

⃝ Ω = C and f(C) ⊂ D.

⃝ Ω = C and |f(z)| < log(1 + |z|) for |z| > 2024.

⃝ Ω = C \ {0} and f(1/n) = 0 for all n ∈ N.

Solution: (D) Take the function sin(π/z).

(b) Which of the following statements is not correct?

⃝ If f has an essential singularity at z0 = 0, then for every w ∈ C, there exists a
sequence (zn) in the image of f such that f(zn) → 0 and zn → w.

⃝
∫

|z|=1
1

z(cos(z))2 dz = 2πi.

⃝ f(z) = (sin(z))3

z3(z+5) has simple poles at z = 0 and z = −5.

⃝ If f and g both have a zero at z0 of order 5, then the function fg has a zero at
z0 of order 10.

Solution: (C) Zero is a removable singularity of f .

(c) Which Ω ⊂ C is not biholomorphic to C \ [0, +∞)?

⃝ Ω = {z ∈ C : ℑ(z) > ℜ(z)2}.

⃝ Ω = C.

⃝ Ω = {z ∈ C : ℜ(z) ∈ (−1, 1)}.

⃝ Ω = {z ∈ C : |z + i| < 2}.

Solution: (B) This follows from the Riemann mapping theorem.

(d) Let f(z) = z6 + 7z3 − 2z2 + 3. How many zeroes does f have inside the open
unit disk D?

⃝ f has exactly 3 zeroes in D.

⃝ f has exactly 4 zeroes in D.

⃝ f has exactly 5 zeroes in D.

⃝ f has exactly 6 zeroes in D.

Solution: (A) By Rouché’s theorem: On the unit circle, |7z3| = 7 > 6 ≥ |z6 −2z2 +3|.
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(e) In which open set does the following map define a holomorphic function?

f(z) =
∑
n≥1

(
2i cos(πn)

)4n
z−2n.

⃝ {z ∈ C : 4 < |z|}.

⃝ {z ∈ C : 2 < |z|}.

⃝ {z ∈ C : 0 < |z| < 2}.

⃝ {z ∈ C : 0 < |z| <
√

2}.

Solution: (A) The series converges on the annulus r < |z| < R, where r =
lim supn |a−n|1/n and 1/R = lim supn |an|1/n. Hence, R = +∞ and r = lim supn |(2i cos(πn))4n|1/2n =
4.

(f) Which formula does not hold for every non-constant holomorphic function f :
C → C \ {0}?

⃝
∫

|z|=1 sin(f(z)2) dz = 0.

⃝ 1
2πi

∫
|z|=1

1
f(z)z2 dz = − f ′(0)

f(0)2 .

⃝ 1
2πi

∫
|z|=1

1
f(z)−f(0) dz = resz=0

1
f
.

⃝
∫

|z|=1
f ′(z)
f(z) dz = 0.

Solution: (C) Because resz=0
1
f

= 0, but the integral may differ from zero since
1

f(z)−f(0) has at least one pole.

2. Open Question Consider the meromorphic function f(z) = z2

sin(z) cos(iz) , and the
curve γ as in the following figure:

−iπ/2

iπ/2

π−π
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(a) Find all zeroes and poles of f and their order.

Solution: For every k ∈ Z, sin(z) has a zero of order one at z = kπ and cos(iz)
has a zero of order one at z = i(π/2 + kπ). On the other hand, z2 has a zero
of order two in z = 0. Hence, we conclude that f has a unique zero of order
one in z = 0, and that all its poles are also of order one and are situated in
{kπ : k ∈ Z \ {0}} ∪ {i(π/2 + kπ) : k ∈ Z}.

(b) Compute the integral
∫

γ f dz.

Solution: We compute the residues of f in z = −π, π, −iπ/2, iπ/2.

resz=πf = lim
z→π

(z − π)z2

sin(z) cos(iz) = π2

cos(iπ)
1

sin′(π) = − π2

cos(iπ) , (1)

resz=−πf = lim
z→−π

(z + π)z2

sin(z) cos(iz) = π2

cos(−iπ)
1

sin′(−π) = − π2

cos(iπ) , (2)

resz=iπ/2f = lim
z→iπ/2

(z − iπ/2)z2

sin(z) cos(iz) = −π2

4 sin(iπ/2)
1

d
dz

cos(iz)|z=iπ/2
= iπ2

4 sin(iπ/2)
(3)

resz=−iπ/2f = lim
z→−iπ/2

(z + iπ/2)z2

sin(z) cos(iz) = −π2

4 sin(−iπ/2)
1

d
dz

cos(iz)|z=−iπ/2
= iπ2

4 sin(iπ/2) .

(4)

The winding numbers associated to this 4 poles (following the above order) are:
-1,1,-1,-1. Applying the Residue Theorem we get that∫

γ
f dz = π3

sin(iπ/2) .

3. Open Question Show that

1
2π

∫ 2π

0
ecos(θ) dθ = 1

2πi

∫
|z|=1

e(z+z−1)/2

z
dz =

+∞∑
n=0

( 1
2nn!

)2
.

Hint: take advantage of the series representation of the exponential: ew = ∑+∞
n=0

wn

n! .

Solution: Taking advantage of the uniformly converging power series representation
of the exponential ew = ∑

n≥0
wn

n! we rewrite the above integral as follows:

1
2πi

∫
|z|=1

e(z+z−1)/2

z
dz = 1

2πi

∫
|z|=1

ez/2

z

∑
n≥0

1
2nznn! dz = 1

2πi

∫
|z|=1

∑
n≥0

ez/2

2nzn+1n! dz

=
∑
n≥0

1
2πi

∫
|z|=1

ez/2

2nzn+1n! dz,
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where in the last identity we exchanged integration with summation in virtue of
Fubini’s Theorem since the internal series converges uniformly in a neighbourhood of
the unit circle. Fix n ≥ 0. Then,

ez/2

2nzn+1n! =
∑
k≥0

zk−n−1

2k+nn!k! ,

and by definition its residue in zero is the coefficient of exponent equal to −1, that is
when k − n − 1 = −1 ⇔ k = n:

resz=0
ez/2

2nzn+1n! = 1
22nn!n! =

( 1
2nn!

)2
.

The conclusion follows by applying the Residue Theorem to each n ≥ 0.

4. Open Question Let f be a holomorphic map of the unit disc D = {z ∈ C : |z| < 1}
onto itself and such that f(0) = 0. Show that

|f(z) + f(−z)| ≤ 2|z|2,

for all z ∈ D.

Recall Schwarz Lemma: Let f : D → D analytic, f(0) = 0. Then, |f ′(0)| ≤ 1,
|f(z)| ≤ |z|, ∀z ∈ D.

Solution: By Schwarz’s Lemma |f(z)| ≤ |z| for all z ∈ D. Let g(z) := f(z)+f(−z)
z

.
Developing f as f(z) = a0 + a1z + a2z

2 + . . . for coefficients (an) ⊂ C, we deduce
that a0 = 0 since by assumption 0 = f(0) = a0. Then

g(z) = a2z + a4z
3 + a6z

5 + . . . ,

defines an analytic function also vanishing in zero. The elementary inequality

|g(z)| ≤ |f(z)| + |f(−z)|
2|z|

≤ 1,

implies that g satisfies the assumptions of Schwarz Lemma, and hence

|g(z)| ≤ |z| ⇒ |f(z) + f(−z)| ≤ 2|z|2,

as wished.

5. Open Question Let f : D → Ĉ be any function, and suppose that g = f 2 and
h = f 3 are meromorphic functions. Let Zf , Zg, Zh and Pf , Pg, Ph the set of zeros
and poles of f , g, h respectively without taking into account their multiplicity.
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(a) Show that f is meromorphic in D.

Solution: The function f is equal to h
g
. Being the quotient of two meromorphic

functions, it is itself meromorphic.

(b) Determine all poles and zeros of f and their orders in terms of the poles and
zeros of h and g. Show that Zf = Zg = Zh and Pf = Pg = Ph. What can you say
about the orders of the poles and zeros?

Solution: By definition, g and h share the same zeros and poles. Let z0 be a common
zero. Then locally there exist two holomorphic functions h1 and g1 non-vanishing in
z0 and such that

h(z) = (z − z0)kh1(z), g(z) = (z − z0)mg1(z),

where k and m are the orders of the zeros for h, g respectively. From h2(z) = f 6(z) =
g3(z) we deduce that 2k = 3m, so in particular k > m, implying that ordz0h > ordz0g,
and from

lim
z→z0

f(z) = lim
z→z0

(z − z0)k−m h1(z)
g1(z) = 0,

we get that f shares the same zeros with h and g and can be extended to an analytic
function in a neighbourhood of z0. The same argument works also for the poles: let
w0 be a common pole of h and g. Then, locally there exists h2 and g2 holomorphic
and such that

1
h(z) = (z − w0)ℓh2(z), 1

g(z) = (z − w0)sh1(z).

where ℓ and s are the orders of the zeros for h, g respectively. From f−6 = g−3 = h−2

we get that 2ℓ = 3s, so in particular ℓ > s and

lim
z→w0

1
f(z) = lim

z→w0
(z − w0)ℓ−s h2(z)

g2(z) = 0

showing that w0 is also a pole of f .

(c) Show that if h is holomorphic in D the same holds for f .

Solution: By the previous exercise, if h is holomorphic, then the same holds for g,
and f can be extended to an holomorphic function near all zeros of h and g.
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