1. Multiple Choice Questions Exactly one answer to each MC question is correct.

- (a) Which of the following is **not** enough to conclude that f is constant?
 - $\bigcirc \Omega = \mathbb{D}$ and $f(x) = \pi$ for all $x \in (-1, 1)$.
 - $\bigcirc \Omega = \mathbb{C} \text{ and } f(\mathbb{C}) \subset \mathbb{D}.$
 - $\bigcirc \Omega = \mathbb{C}$ and $|f(z)| < \log(1 + |z|)$ for |z| > 2024.
- $\bigcirc \Omega = \mathbb{C} \setminus \{0\}$ and f(1/n) = 0 for all $n \in \mathbb{N}$.

Solution: (D) Take the function $\sin(\pi/z)$.

- (b) Which of the following statements is **not** correct?
 - \bigcirc If f has an essential singularity at $z_0 = 0$, then for every $w \in \mathbb{C}$, there exists a sequence (z_n) in the image of f such that $f(z_n) \to 0$ and $z_n \to w$.
 - $\bigcirc \int_{|z|=1} \frac{1}{z(\cos(z))^2} dz = 2\pi i.$
 - $\bigcirc f(z) = \frac{(\sin(z))^3}{z^3(z+5)}$ has simple poles at z = 0 and z = -5.
 - \bigcirc If f and g both have a zero at z_0 of order 5, then the function fg has a zero at z_0 of order 10.

Solution: (C) Zero is a removable singularity of f.

(c) Which $\Omega \subset \mathbb{C}$ is **not** biholomorphic to $\mathbb{C} \setminus [0, +\infty)$?

$$\bigcirc \ \Omega = \{ z \in \mathbb{C} : \Im(z) > \Re(z)^2 \}.$$

$$\bigcirc \Omega = \mathbb{C}.$$

- $\bigcirc \ \Omega = \{ z \in \mathbb{C} : \Re(z) \in (-1,1) \}.$
- $\bigcirc \ \Omega = \{ z \in \mathbb{C} : |z+i| < 2 \}.$

Solution: (B) This follows from the Riemann mapping theorem.

(d) Let $f(z) = z^6 + 7z^3 - 2z^2 + 3$. How many zeroes does f have inside the open unit disk \mathbb{D} ?

- $\bigcirc f$ has exactly 3 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 4 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 5 zeroes in \mathbb{D} .
- $\bigcirc f$ has exactly 6 zeroes in \mathbb{D} .

Solution: (A) By Rouché's theorem: On the unit circle, $|7z^3| = 7 > 6 \ge |z^6 - 2z^2 + 3|$.

(e) In which open set does the following map define a holomorphic function?

$$f(z) = \sum_{n \ge 1} \left(2i \cos(\pi n) \right)^{4n} z^{-2n}.$$

$$\bigcirc \{ z \in \mathbb{C} : 4 < |z| \}.$$

$$\bigcirc \{ z \in \mathbb{C} : 2 < |z| \}.$$

$$\bigcirc \{ z \in \mathbb{C} : 0 < |z| < 2 \}.$$

$$\bigcirc \{ z \in \mathbb{C} : 0 < |z| < \sqrt{2} \}.$$

Solution: (A) The series converges on the annulus r < |z| < R, where $r = \limsup_n |a_{-n}|^{1/n}$ and $1/R = \limsup_n |a_n|^{1/n}$. Hence, $R = +\infty$ and $r = \limsup_n |(2i\cos(\pi n))^{4n}|^{1/2n} = 4$.

(f) Which formula does **not** hold for every non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$?

$$\bigcirc \int_{|z|=1} \sin(f(z)^2) \, dz = 0.$$

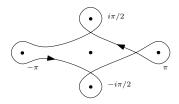
$$\bigcirc \ \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{f(z)z^2} dz = -\frac{f'(0)}{f(0)^2}.$$

$$\bigcirc \ \frac{1}{2\pi i} \int_{|z|=1} \frac{1}{f(z) - f(0)} dz = \operatorname{res}_{z=0} \frac{1}{f}.$$

$$\bigcirc \int_{|z|=1} \frac{f'(z)}{f(z)} dz = 0.$$

Solution: (C) Because $\operatorname{res}_{z=0} \frac{1}{f} = 0$, but the integral may differ from zero since $\frac{1}{f(z)-f(0)}$ has at least one pole.

2. Open Question Consider the meromorphic function $f(z) = \frac{z^2}{\sin(z)\cos(iz)}$, and the curve γ as in the following figure:



D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Mock Exam	HS 2024

(a) Find all zeroes and poles of f and their order.

Solution: For every $k \in \mathbb{Z}$, $\sin(z)$ has a zero of order one at $z = k\pi$ and $\cos(iz)$ has a zero of order one at $z = i(\pi/2 + k\pi)$. On the other hand, z^2 has a zero of order two in z = 0. Hence, we conclude that f has a unique zero of order one in z = 0, and that all its poles are also of order one and are situated in $\{k\pi : k \in \mathbb{Z} \setminus \{0\}\} \cup \{i(\pi/2 + k\pi) : k \in \mathbb{Z}\}.$

(b) Compute the integral $\int_{\gamma} f dz$.

Solution: We compute the residues of f in $z = -\pi, \pi, -i\pi/2, i\pi/2$.

$$\operatorname{res}_{z=\pi} f = \lim_{z \to \pi} \frac{(z-\pi)z^2}{\sin(z)\cos(iz)} = \frac{\pi^2}{\cos(i\pi)} \frac{1}{\sin'(\pi)} = -\frac{\pi^2}{\cos(i\pi)},\tag{1}$$

$$\operatorname{res}_{z=-\pi} f = \lim_{z \to -\pi} \frac{(z+\pi)z^2}{\sin(z)\cos(iz)} = \frac{\pi^2}{\cos(-i\pi)} \frac{1}{\sin'(-\pi)} = -\frac{\pi^2}{\cos(i\pi)}, \tag{2}$$

$$\operatorname{res}_{z=-\pi} f = \lim_{z \to -\pi} \frac{(z-i\pi/2)z^2}{\sin(z)\cos(iz)} = \frac{-\pi^2}{\cos(-i\pi)} \frac{1}{\sin'(-\pi)} = \frac{i\pi^2}{\sin(z)\cos(i\pi)},$$

$$\operatorname{res}_{z=i\pi/2J} = \lim_{z \to i\pi/2} \lim_{s \to i\pi/2} \frac{1}{\sin(z)\cos(iz)} = \frac{1}{4} \frac{1}{\sin(i\pi/2)} \frac{1}{\frac{d}{dz}\cos(iz)|_{z=i\pi/2}} = \frac{1}{4} \frac{1}{\sin(i\pi/2)}$$
(3)

$$\operatorname{res}_{z=-i\pi/2} f = \lim_{z \to -i\pi/2} \frac{(z+i\pi/2)z^2}{\sin(z)\cos(iz)} = \frac{-\pi^2}{4\sin(-i\pi/2)} \frac{1}{\frac{d}{dz}\cos(iz)|_{z=-i\pi/2}} = \frac{i\pi^2}{4\sin(i\pi/2)}.$$
(4)

The winding numbers associated to this 4 poles (following the above order) are: -1,1,-1,-1. Applying the Residue Theorem we get that

$$\int_{\gamma} f \, dz = \frac{\pi^3}{\sin(i\pi/2)}$$

3. Open Question Show that

$$\frac{1}{2\pi} \int_0^{2\pi} e^{\cos(\theta)} d\theta = \frac{1}{2\pi i} \int_{|z|=1}^{2\pi i} \frac{e^{(z+z^{-1})/2}}{z} dz = \sum_{n=0}^{+\infty} \left(\frac{1}{2^n n!}\right)^2.$$

Hint: take advantage of the series representation of the exponential: $e^w = \sum_{n=0}^{+\infty} \frac{w^n}{n!}$.

Solution: Taking advantage of the uniformly converging power series representation of the exponential $e^w = \sum_{n\geq 0} \frac{w^n}{n!}$ we rewrite the above integral as follows:

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{e^{(z+z^{-1})/2}}{z} dz = \frac{1}{2\pi i} \int_{|z|=1} \frac{e^{z/2}}{z} \sum_{n\geq 0} \frac{1}{2^n z^n n!} dz = \frac{1}{2\pi i} \int_{|z|=1} \sum_{n\geq 0} \frac{e^{z/2}}{2^n z^{n+1} n!} dz$$
$$= \sum_{n\geq 0} \frac{1}{2\pi i} \int_{|z|=1} \frac{e^{z/2}}{2^n z^{n+1} n!} dz,$$

3/5

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Mock Exam	Prof. Dr. Ö. Imamoglu

where in the last identity we exchanged integration with summation in virtue of Fubini's Theorem since the internal series converges uniformly in a neighbourhood of the unit circle. Fix $n \ge 0$. Then,

$$\frac{e^{z/2}}{2^n z^{n+1} n!} = \sum_{k \ge 0} \frac{z^{k-n-1}}{2^{k+n} n! k!},$$

and by definition its residue in zero is the coefficient of exponent equal to -1, that is when $k - n - 1 = -1 \Leftrightarrow k = n$:

$$\operatorname{res}_{z=0} \frac{e^{z/2}}{2^n z^{n+1} n!} = \frac{1}{2^{2n} n! n!} = \left(\frac{1}{2^n n!}\right)^2.$$

The conclusion follows by applying the Residue Theorem to each $n \ge 0$.

4. Open Question Let f be a holomorphic map of the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ onto itself and such that f(0) = 0. Show that

$$|f(z) + f(-z)| \le 2|z|^2,$$

for all $z \in \mathbb{D}$.

Recall Schwarz Lemma: Let $f : \mathbb{D} \to \mathbb{D}$ analytic, f(0) = 0. Then, $|f'(0)| \leq 1$, $|f(z)| \leq |z|, \forall z \in \mathbb{D}$.

Solution: By Schwarz's Lemma $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$. Let $g(z) := \frac{f(z)+f(-z)}{z}$. Developing f as $f(z) = a_0 + a_1 z + a_2 z^2 + \ldots$ for coefficients $(a_n) \subset \mathbb{C}$, we deduce that $a_0 = 0$ since by assumption $0 = f(0) = a_0$. Then

$$g(z) = a_2 z + a_4 z^3 + a_6 z^5 + \dots,$$

defines an analytic function also vanishing in zero. The elementary inequality

$$|g(z)| \le \frac{|f(z)| + |f(-z)|}{2|z|} \le 1,$$

implies that g satisfies the assumptions of Schwarz Lemma, and hence

$$|g(z)| \le |z| \Rightarrow |f(z) + f(-z)| \le 2|z|^2,$$

as wished.

5. Open Question Let $f : \mathbb{D} \to \hat{\mathbb{C}}$ be any function, and suppose that $g = f^2$ and $h = f^3$ are meromorphic functions. Let Z_f , Z_g , Z_h and P_f , P_g , P_h the set of zeros and poles of f, g, h respectively without taking into account their multiplicity.

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Mock Exam	HS 2024

(a) Show that f is meromorphic in \mathbb{D} .

Solution: The function f is equal to $\frac{h}{g}$. Being the quotient of two meromorphic functions, it is itself meromorphic.

(b) Determine all poles and zeros of f and their orders in terms of the poles and zeros of h and g. Show that $Z_f = Z_g = Z_h$ and $P_f = P_g = P_h$. What can you say about the orders of the poles and zeros?

Solution: By definition, g and h share the same zeros and poles. Let z_0 be a common zero. Then locally there exist two holomorphic functions h_1 and g_1 non-vanishing in z_0 and such that

$$h(z) = (z - z_0)^k h_1(z), \quad g(z) = (z - z_0)^m g_1(z),$$

where k and m are the orders of the zeros for h, g respectively. From $h^2(z) = f^6(z) = g^3(z)$ we deduce that 2k = 3m, so in particular k > m, implying that $\operatorname{ord}_{z_0} h > \operatorname{ord}_{z_0} g$, and from

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} (z - z_0)^{k-m} \frac{h_1(z)}{g_1(z)} = 0.$$

we get that f shares the same zeros with h and g and can be extended to an analytic function in a neighbourhood of z_0 . The same argument works also for the poles: let w_0 be a common pole of h and g. Then, locally there exists h_2 and g_2 holomorphic and such that

$$\frac{1}{h(z)} = (z - w_0)^{\ell} h_2(z), \quad \frac{1}{g(z)} = (z - w_0)^s h_1(z).$$

where ℓ and s are the orders of the zeros for h, g respectively. From $f^{-6} = g^{-3} = h^{-2}$ we get that $2\ell = 3s$, so in particular $\ell > s$ and

$$\lim_{z \to w_0} \frac{1}{f(z)} = \lim_{z \to w_0} (z - w_0)^{\ell - s} \frac{h_2(z)}{g_2(z)} = 0$$

showing that w_0 is also a pole of f.

(c) Show that if h is holomorphic in \mathbb{D} the same holds for f.

Solution: By the previous exercise, if h is holomorphic, then the same holds for g, and f can be extended to an holomorphic function near all zeros of h and g.