1. Multiple Choice Questions Exactly one answer to each MC question is correct.

(a) Let Ω be an open subset of \mathbb{C} and $f : \Omega \to \mathbb{C}$ a holomorphic function. Which of the following is **NOT** enough to conclude that f is constant?

- $\bigcirc \Omega = \mathbb{C} \text{ and } |f(ix)| \leq 1 \text{ for all } x \in \mathbb{R}.$
- $\bigcirc \Omega = \mathbb{C}$, and $f(\mathbb{C}) \cap D_1(0) = \emptyset$.
- $\bigcirc \Omega = D_1(0)$ and $\Re(f)$ is constant.
- $\bigcirc \Omega = \mathbb{C} \text{ and } |f(z)| < |z|^{1/2} \text{ for } |z| > 2024.$
- (b) Which of the following statements is correct?
 - \bigcirc If f and g both have a pole at z_0 with non zero residues than the function fg has a pole at z_0 with non zero residue.
 - \bigcirc If f and g both have a pole at z_0 with non zero residues than the function f + g has a pole at z_0 with non zero residue.
 - $\bigcirc f(z) = \frac{z^2 + 2023z}{\sin(z)}$ is bounded in a neighbourhood of 0.
 - $\bigcirc f(z) = \frac{z^5+1}{z(z+1)^2}$ has simple pole at z = 0 and a double pole at z = -1.

(c) Which formula holds true for ALL holomorphic functions $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ and ALL simple closed curves γ ?

- $\bigcirc \int_{\gamma} \overline{f(z)} dz = 0 \qquad \qquad \bigcirc \int_{\gamma} \frac{f(z)}{z} dz = 2\pi i f(0) \\ \bigcirc \int_{\gamma} \frac{f'}{f} dz = 0 \qquad \qquad \bigcirc \int_{\gamma} f''(z) dz = 2\pi i f'(0)$
- (d) Let $f, g, h: \mathbb{C} \to \mathbb{C}$ be three holomorphic functions such that

$$f(0) = g(0) = h(0) = 0.$$

Which of the following is correct?

- \bigcirc ord₀(fg + h) \ge max{ord₀(f) + ord₀(g), ord₀(h)}
- \bigcirc ord₀(f^2gh) = 2 ord₀(f) + ord₀(g) + ord₀(h)
- $\bigcirc \operatorname{ord}_0(f(1+gh)) = \operatorname{ord}_0(f)(1 + \operatorname{ord}_0(g) + \operatorname{ord}_0(h))$
- \bigcirc ord₀(fgh) = ord₀(f) ord₀(g) ord₀(h)

(e) Let $f(z) = \frac{e^z}{z-2}$. Which of the following equalities is **NOT** correct? All circles are positively oriented.

$\bigcirc \ \int_{ z =1} f(z)dz = 0$	$\bigcirc \int_{ z =1} \frac{f'(z)}{f(z)} dz = 2\pi i$
$\bigcirc \ \int_{ z =3} f(z)dz = 2\pi i e^2$	$\bigcirc \int_{ z =3} \frac{f(z)}{z-2} dz = 2\pi i e^2$

(f) Which of the following functions is **NOT** holomorphic?

 $\bigcirc f(z) = z^{2024} + 3$ $\bigcirc f(x + iy) = (\cos(x) + i\sin(x))e^{-y}$ $\bigcirc f(x + iy) = x^2 - y^2 + x + i(y + 2xy)$ $\bigcirc f(x + iy) = x - iy + 2$

2. Open question

(a) Let $\alpha \in \mathbb{C}$ be a fixed non-zero complex number. Construct a non-constant holomorphic function $f: \mathbb{C} \to \mathbb{C}$ such that $f(z + \alpha) = f(z)$ for all $z \in \mathbb{C}$.

Hint: first consider the case $\alpha = 2\pi i$.

(b) Show that if a holomorphic function $f : \mathbb{C} \to \mathbb{C}$ satisfies the relations f(z+1) = f(z) and f(z+i) = f(z) for all $z \in \mathbb{C}$, then f is constant.

3. Open question If f is holomorphic on 0 < |z| < 2 and satisfies $f(\frac{1}{n}) = n^2$ and $f(\frac{-1}{n}) = n^3$ for all positive integers n, show that f has an essential singularity at 0. *Hint:* show that f can have neither a removable singularity nor a pole at 0.

4. Open question Consider the function

$$f(z) = \frac{\sin z}{z(z-1)^2}.$$

- (a) Find the zeros of f and their order.
- (b) Find the poles of f and their order.

(c) Compute the integral $\int_{\gamma} f dz$, when γ is the circle of radius 2 centered in 0 positively oriented.

5. Open question Show that

$$\int_0^{\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = \pi.$$