1. Multiple Choice Questions

(a) Let Ω be an open subset of \mathbb{C} and $f : \Omega \to \mathbb{C}$ a holomorphic function. Which of the following is NOT enough to conclude that f is constant

- $\bigcirc \Omega = \mathbb{C} \text{ and } |f(ix)| \leq 1 \text{ for all } x \in \mathbb{R}.$
- $\bigcirc \Omega = \mathbb{C}$, and $f(\mathbb{C}) \cap D_1(0) = \emptyset$
- $\bigcirc \Omega = D_1(0)$ and $\Re(f)$ is constant.
- $\bigcirc \Omega = \mathbb{C}$ and $|f(z)| < |z|^{1/2}$ for |z| > 2024

Solution: (a) Take the function $\sin(iz)$. (b) is correct since $f(\mathbb{C}) \cap D_1(0) = \emptyset$ imply that $0 \notin f(\mathbb{C})$ and 1/f is holomorphic and bounded. By Liouville's theorem 1/f hence f is constant. (c) is correct since the disc is connected. (see also Exercise 1.5(c)) (d) Follows using Cauchy inequalities which in this case gives for the power series coefficients of f that $|a_n| < r^{1/2}/r^n$ for any r > 2024. Letting r go to ∞ shows that $a_n = 0$ for $n \ge 1$.

- (b) Which of the following statements is correct?
 - \bigcirc If f and g both have a pole at z_0 with non zero residues than the function fg has a pole at z_0 with non zero residue.
 - \bigcirc If f and g both have a pole at z_0 with non zero residues than the function f + g has a pole at z_0 with non zero residue.
 - $\bigcirc f(z) = \frac{z^2 + 2023z}{\sin(z)}$ is bounded in a neighbourhood of 0.
 - $\bigcirc f(z) = \frac{z^5+1}{z(z+1)^2}$ has simple pole at z = 0 and a double pole at z = -1.

Solution: (a) and (b) are false: take f = g = 1/z and f = -g respectively. (d) is false since $z^5 + 1$ also has a simple zero at z = -1. (c) is correct since the singularity at z = 0 is removable.

(c) Which formula holds true for ALL holomorphic functions $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ and ALL simple closed curves γ ?

$$\bigcirc \int_{\gamma} \overline{f(z)} dz = 0$$

$$\bigcirc \int_{\gamma} \frac{f'}{f} dz = 0$$

- $\bigcirc \int_{\gamma} \frac{f(z)}{z} dz = 2\pi i f(0)$
- $\bigcirc \int_{\gamma} f''(z) \, dz = 2\pi i f'(0)$

Solution: The correct answer is (b) since f'/f is holomorphic. Counterexamples: (a) f(z) = z, $\gamma = \partial \mathbb{D}$, (c) when 0 not in the interior of γ and $f(0) \neq 0$, (d) f'' is holomorphic and hence the RHS is always equal to zero.

(d) Let $f, g, h : \mathbb{C} \to \mathbb{C}$ three holomorphic functions such that f(0) = g(0) = h(0) = 0. Then

- $\bigcirc \operatorname{ord}_0(fg+h) \ge \max\{\operatorname{ord}_0(f) + \operatorname{ord}_0(g), \operatorname{ord}_0(h)\}.$
- \bigcirc ord₀(f^2gh) = 2 ord₀(f) + ord₀(g) + ord₀(h)
- $\bigcirc \operatorname{ord}_0(f(1+gh)) = \operatorname{ord}_0(f)(1 + \operatorname{ord}_0(g) + \operatorname{ord}_0(h))$
- \bigcirc ord₀(fgh) = ord₀(f) ord₀(g) ord₀(h)

Solution: The correct solution is (b). Counterexamples: (a) f and g identically zero, h = z, (c) and (d) f = g = h = z

(e) Let $f(z) = \frac{e^z}{z-2}$. Which of the following statements is NOT correct. All circles are positively oriented.

- $\bigcirc \int_{|z|=1} f(z)dz = 0.$
- $\bigcirc \int_{|z|=3} f(z)dz = 2\pi i e^2.$

$$\bigcirc \int_{|z|=1} \frac{f'(z)}{f(z)} dz = 2\pi i.$$

$$\bigcirc \int_{|z|=3} \frac{f(z)}{z-2} dz = 2\pi i e^2.$$

Solution: The correct solution is (c). It should be 0 since f has no zeroes or poles inside |z| = 1

(f) Which of the following functions is NOT holomorphic?

 $\bigcirc f(z) = z^{2024} + 3.$ $\bigcirc f(x + iy) = (\cos(x) + i\sin(x))e^{-y}.$ $\bigcirc f(x + iy) = x^2 - y^2 + x + i(y + 2xy)$ $\bigcirc f(x + iy) = x - iy + 2.$

Solution: The correct solution is (d), since $x - iy + 2 = \overline{z} + 2$.

2. Open question

(a) Let $\alpha \in \mathbb{C}$ be a fixed non-zero complex number. Construct a non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that $f(z + \alpha) = f(z)$ for all $z \in \mathbb{C}$.

Hint: consider first the case $\alpha = 2\pi i$.

Solution: Consider the function $f(z) = e^z$. We check if $f(z + 2\pi i) = f(z)$:

$$f(z+2\pi i) = e^{z+2\pi i} = e^z \cdot e^{2\pi i} = e^z.$$

Since $e^{2\pi i} = 1$, it follows that $f(z + 2\pi i) = f(z)$. This satisfies the periodicity condition for $\alpha = 2\pi i$.

For any $\alpha \in \mathbb{C} \setminus \{0\}$, we can take the function:

$$f(z) = e^{\frac{2\pi i}{\alpha}z}.$$

Then,

$$f(z+\alpha) = e^{\frac{2\pi i}{\alpha}(z+\alpha)} = e^{\frac{2\pi i}{\alpha}z} \cdot e^{2\pi i} = e^{\frac{2\pi i}{\alpha}z} = f(z)$$

(b) Show that if a holomorphic function $f : \mathbb{C} \to \mathbb{C}$ satisfies the relations f(z+1) = f(z) and f(z+i) = f(z) for all $z \in \mathbb{C}$, then f is constant.

Solution: Let $Q = [-1, 1]^2$ be the closed square centered at 0 with side length 1. Since Q is compact, we have:

$$\sup_{z \in Q} |f(z)| =: B < \infty.$$

For any $z \in \mathbb{C}$, there exist integers $n, k \in \mathbb{Z}$ such that $z + n + ik \in Q$. Using the periodicity conditions f(z+1) = f(z) and f(z+i) = f(z) repeatedly, we get:

$$f(z) = f(z + n + ik) \implies |f(z)| \le B.$$

Hence, f is bounded on \mathbb{C} . By Liouville's theorem, which states that a bounded entire function must be constant, we conclude that f is constant.

3. Open question If f is holomorphic on 0 < |z| < 2 and satisfies $f(\frac{1}{n}) = n^2$ and $f(\frac{-1}{n}) = n^3$ for all positive integers n, show that f has an essential singularity at 0. *Hint*: show that f can have neither a removable singularity nor a pole at 0.

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Mock Exam Solutions	Prof. Dr. Ö. Imamoglu

Solution: Since $f(1/n) = n^2$, f is unbounded near 0. hence by Riemann's theorem on removable singularities 0 is not removable. Assume on the contrary f has a pole of order $k \ge 1$ at 0. Then in a neighnourhood of zero, there is a holomorphic function g such that $g(0) \ne 0$ and

$$f(z) = z^{-k}g(z).$$

Let z = 1/n then $n^2 = g(1/n)n^k$. Now letting n go to infinity gives k = 2. On the other hand using z = -1/n gives $n^3 = g(-1/n)n^k$ and letting n go to infinity gives k = 3. Since the order of a pole is unique, this is a contradiction. Hence f does not have a pole either.

4. Open question Consider the function

$$f(z) = \frac{\sin z}{z(z-1)^2}.$$

(a) Find the zeros of f and their order.

Solution: The zeros of f are the zeros of the numerator $\sin z$ that are not canceled by zeros of the denominator. The zeros of $\sin z$ occur at

$$z = n\pi, \quad n \in \mathbb{Z}.$$

We need to consider these zeros except at points where the denominator also vanishes (which could potentially cancel the zero or create a singularity). The denominator $z(z-1)^2$ has zeros at z = 0 and z = 1.

- At
$$z = 0$$
:

- Numerator: $\sin 0 = 0$.
- Denominator: z = 0, so the denominator is zero.
- Therefore, both numerator and denominator vanish at z = 0.

- At
$$z = 1$$
:

- Numerator: $\sin 1 \neq 0$.
- Denominator: $(z-1)^2 = 0$, so the denominator has a zero of order 2.

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Mock Exam Solutions	HS 2024

To determine the order of zeros of f at $z = n\pi$, with $n \neq 0$ we note that since $\sin z$ has simple zeros at $z = n\pi$ $(n \neq 0)$, and the denominator does not vanish at these points, f has zeros of order 1 at these points.

At z = 0, both the numerator and the denominator vanish. To determine the behavior of f(z) near z = 0, we can consider the limit:

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin z}{z(z-1)^2} = 1.$$

To see this, one can use the Taylor series expansion $\sin z = z - \frac{z^3}{6} + \cdots$, near z = 0 to get

$$\frac{\sin z}{z(z-1)^2} = \frac{1}{(z-1)^2} (1 - \frac{z^2}{6} + \cdots)$$

which goes to 1 as z goes to 0. Therefore, f(z) has an analytic extention to z = 0. Hence, z = 0 is a removable singularity, not a zero or pole.

The zeros of f are at $z = n\pi$ for $n \in \mathbb{Z}$ with $z \neq 0$, and each zero is of order 1.

(b) Find the poles of f and their order.

Solution: The poles of f occur at the zeros of the denominator that are not canceled by zeros of the numerator.

From the denominator $z(z-1)^2$, we have:

- At z = 0: As before both the numerator and the denominator vanish at z = 0, and as shown earlier, f(z) has a removable singularity at z = 0.

- At
$$z = 1$$
:

- Numerator: $\sin 1 \neq 0$.
- Denominator: $(z 1)^2 = 0$.
- The denominator has a zero of order 2, and the numerator does not vanish.

Therefore, z = 1 is a pole of order 2.

(c) Compute the integral

$$\int_{\gamma} f \, dz$$

when γ is the circle of radius 2 centered in 0 positively oriented.

Solution: We will use the Residue Theorem, which states that if γ is a positively oriented simple closed contour enclosing a finite number of isolated singularities a_k of f(z), then

$$\int_{\gamma} f(z) \, dz = 2\pi i \sum \operatorname{Res}_{z=a_k} f(z),$$

where the sum is over all singularities a_k inside γ .

First, we identify the singularities inside the circle |z| = 2.

- The singularities of f(z) are at z = 1 (pole of order 2) and z = 0 (removable singularity). - As established earlier, z = 0 is a removable singularity, so it does not contribute to the integral. - Therefore, the only pole inside γ is at z = 1.

We need to compute $\operatorname{Res}_{z=1} f(z)$.

Since the pole at z = 1 is of order 2, the residue is given by

$$\operatorname{Res}_{z=1} f(z) = \lim_{z \to 1} \frac{d}{dz} \left[(z-1)^2 f(z) \right].$$

Compute $(z-1)^2 f(z)$:

$$\Phi(z) = (z-1)^2 f(z) = (z-1)^2 \cdot \frac{\sin z}{z(z-1)^2} = \frac{\sin z}{z}.$$

Now compute the derivative $\Phi'(z)$:

$$\Phi'(z) = \frac{d}{dz} \left(\frac{\sin z}{z}\right) = \frac{z \cos z - \sin z}{z^2}.$$

Then,

$$\operatorname{Res}_{z=1} f(z) = \Phi'(1) = \frac{1 \cdot \cos 1 - \sin 1}{1^2} = \cos 1 - \sin 1.$$

Therefore, the integral is

$$\int_{\gamma} f(z) dz = 2\pi i \times \operatorname{Res}_{z=1} f(z) = 2\pi i (\cos 1 - \sin 1).$$

5. Open question Show that

$$\int_0^{\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = \pi.$$

Solution: Let $f(z) = e^{z}/z$ and $\gamma(\theta) = e^{i\theta}$, $\theta \in [0, 2\pi]$. Then

$$\int_{\gamma} \frac{e^z}{z} = i \int_0^{2\pi} e^{\cos\theta + i\sin\theta} d\theta$$
$$= i \int_0^{2\pi} e^{\cos\theta} [\cos(\sin\theta) + i\sin(\sin\theta)] d\theta$$

On the other hand, using the reside formula yields $\int_{\gamma} \frac{e^z}{z} = 2\pi i$ since f(z) has only one simple pole inside the disc, specifically at z = 0 with residue equal to $e^0 = 1$. Hence by taking the imaginary part of both sides we obtain $\int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 2\pi$. Using the symmetry of the function we conclude $\int_0^{\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = \pi$.