1. Multiple Choice Questions

(a) Let Ω be an open subset of $\mathbb C$ and $f : \Omega \to \mathbb C$ a holomorphic function. Which of the following is NOT enough to conclude that *f* is constant

- $\bigcap \Omega = \mathbb{C}$ and $|f(ix)| \leq 1$ for all $x \in \mathbb{R}$.
- $\bigcap \Omega = \mathbb{C}$, and $f(\mathbb{C}) \cap D_1(0) = \emptyset$
- $\bigcap \Omega = D_1(0)$ and $\Re(f)$ is constant.
- ◯ $Ω = ℂ$ and $|f(z)| < |z|^{1/2}$ for $|z| > 2024$

Solution: (a) Take the function $\sin(iz)$. (b) is correct since $f(\mathbb{C}) \cap D_1(0) = \emptyset$ imply that $0 \notin f(\mathbb{C})$ and $1/f$ is holomorphic and bounded. By Liouville's theorem $1/f$ hence f is constant. (c) is correct since the disc is connected. (see also Exercise 1.5(c)) (d) Follows using Cauchy inequalities which in this case gives for the power series coefficients of *f* that $|a_n| < r^{1/2}/r^n$ for any $r > 2024$. Letting *r* go to ∞ shows that $a_n = 0$ for $n \geq 1$.

- **(b)** Which of the following statements is correct?
	- \bigcirc If *f* and *g* both have a pole at z_0 with non zero residues than the function fg has a pole at z_0 with non zero residue.
	- \bigcirc If *f* and *g* both have a pole at z_0 with non zero residues than the function $f + g$ has a pole at z_0 with non zero residue.
	- \bigcirc $f(z) = \frac{z^2 + 2023z}{\sin(z)}$ $\frac{+2023z}{\sin(z)}$ is bounded in a neighbourhood of 0.
	- ◯ $f(z) = \frac{z^5+1}{z(z+1)^2}$ has simple pole at $z = 0$ and a double pole at $z = -1$.

Solution: (a) and (b) are false: take $f = g = 1/z$ and $f = -g$ respectively. (d) is false since $z^5 + 1$ also has a simple zero at $z = -1$. (c) is correct since the singularity at $z = 0$ is removable.

(c) Which formula holds true for ALL holomorphic functions $f : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ and ALL simple closed curves *γ*?

$$
\bigcirc \int_{\gamma} \overline{f(z)} \, dz = 0
$$

$$
\bigcirc \ \int_{\gamma} \frac{f'}{f} \, dz = 0
$$

- ⃝ R *γ f*(*z*) $\frac{z}{z}$ *dz* = $2πif(0)$
- \bigcirc *∫_γ* $f''(z) dz = 2πif'(0)$

Solution: The correct answer is (b) since f'/f is holomorphic. Counterexamples: (a) $f(z) = z$, $\gamma = \partial \mathbb{D}$, (c) when 0 not in the interior of γ and $f(0) \neq 0$, (d) f'' is holomorphic and hence the RHS is always equal to zero.

(d) Let $f, g, h : \mathbb{C} \to \mathbb{C}$ three holomorphic functions such that $f(0) = g(0) = h(0) = 0$. Then

 \bigcirc ord₀(*fg* + *h*) \geq max{ord₀(*f*) + ord₀(*g*)*,* ord₀(*h*)}.

$$
\bigcirc \operatorname{ord}_0(f^2gh) = 2 \operatorname{ord}_0(f) + \operatorname{ord}_0(g) + \operatorname{ord}_0(h)
$$

- \bigcirc ord₀ $(f(1 + qh)) = \text{ord}_0(f)(1 + \text{ord}_0(q) + \text{ord}_0(h))$
- \bigcirc ord₀(*fgh*) = ord₀(*f*) ord₀(*g*) ord₀(*h*)

Solution: The correct solution is (b). Counterexamples: (a) *f* and *g* identically zero, $h = z$, (c) and (d) $f = q = h = z$

(e) Let $f(z) = \frac{e^z}{z-1}$ $\frac{e^z}{z-2}$. Which of the following statements is NOT correct. All circles are positively oriented.

- \bigcirc $\int_{|z|=1} f(z) dz = 0.$
- \bigcirc $\int_{|z|=3} f(z) dz = 2\pi i e^2$.

$$
\bigcirc \ \int_{|z|=1} \frac{f'(z)}{f(z)} dz = 2\pi i.
$$

$$
\bigcirc \ \int_{|z|=3} \frac{f(z)}{z-2} dz = 2\pi i e^2.
$$

Solution: The correct solution is (c). It should be 0 since f has no zeroes or poles inside $|z|=1$

(f) Which of the following functions is NOT holomorphic?

 \bigcirc $f(z) = z^{2024} + 3.$ ◯ $f(x + iy) = (\cos(x) + i\sin(x))e^{-y}$. ◯ $f(x + iy) = x^2 - y^2 + x + i(y + 2xy)$ ◯ $f(x + iy) = x - iy + 2.$

Solution: The correct solution is (d), since $x - iy + 2 = \overline{z} + 2$.

2. Open question

(a) Let $\alpha \in \mathbb{C}$ be a fixed non-zero complex number. Construct a non-constant holomorphic function $f: \mathbb{C} \to \mathbb{C}$ such that $f(z + \alpha) = f(z)$ for all $z \in \mathbb{C}$.

Hint: consider first the case $\alpha = 2\pi i$.

Solution: Consider the function $f(z) = e^z$. We check if $f(z + 2\pi i) = f(z)$:

$$
f(z + 2\pi i) = e^{z + 2\pi i} = e^z \cdot e^{2\pi i} = e^z.
$$

Since $e^{2\pi i} = 1$, it follows that $f(z + 2\pi i) = f(z)$. This satisfies the periodicity condition for $\alpha = 2\pi i$.

For any $\alpha \in \mathbb{C} \setminus \{0\}$, we can take the function:

$$
f(z) = e^{\frac{2\pi i}{\alpha}z}.
$$

Then,

$$
f(z+\alpha) = e^{\frac{2\pi i}{\alpha}(z+\alpha)} = e^{\frac{2\pi i}{\alpha}z} \cdot e^{2\pi i} = e^{\frac{2\pi i}{\alpha}z} = f(z).
$$

(b) Show that if a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ satisfies the relations $f(z+1) =$ $f(z)$ and $f(z + i) = f(z)$ for all $z \in \mathbb{C}$, then *f* is constant.

Solution: Let $Q = [-1, 1]^2$ be the closed square centered at 0 with side length 1. Since *Q* is compact, we have:

$$
\sup_{z \in Q} |f(z)| =: B < \infty.
$$

For any $z \in \mathbb{C}$, there exist integers $n, k \in \mathbb{Z}$ such that $z + n + ik \in Q$. Using the periodicity conditions $f(z+1) = f(z)$ and $f(z+i) = f(z)$ repeatedly, we get:

$$
f(z) = f(z + n + ik) \quad \Rightarrow \quad |f(z)| \leq B.
$$

Hence, f is bounded on \mathbb{C} . By Liouville's theorem, which states that a bounded entire function must be constant, we conclude that *f* is constant.

3. Open question If *f* is holomorphic on $0 < |z| < 2$ and satisfies $f(\frac{1}{n})$ $\frac{1}{n}$) = n^2 and $f\left(\frac{-1}{n}\right)$ $\frac{(-1)}{n}$ = n^3 for all positive integers *n*, show that *f* has an essential singularity at 0. *Hint*: show that *f* can have neither a removable singularity nor a pole at 0.

Solution: Since $f(1/n) = n^2$, f is unbounded near 0. hence by Riemann's theorem on removable singularities 0 is not removable. Assume on the contrary *f* has a pole of order $k \geq 1$ at 0. Then in a neighnourhood of zero, there is a holomorphic function *g* such that $q(0) \neq 0$ and

$$
f(z) = z^{-k}g(z).
$$

Let $z = 1/n$ then $n^2 = g(1/n)n^k$. Now letting *n* go to infinity gives $k = 2$. On the other hand using $z = -1/n$ gives $n^3 = g(-1/n)n^k$ and letting *n* go to infinity gives $k = 3$. Since the order of a pole is unique, this is a contradiction. Hence f does not have a pole either.

4. Open question Consider the function

$$
f(z) = \frac{\sin z}{z(z-1)^2}.
$$

(a) Find the zeros of *f* and their order.

Solution: The zeros of *f* are the zeros of the numerator sin *z* that are not canceled by zeros of the denominator. The zeros of sin *z* occur at

$$
z = n\pi, \quad n \in \mathbb{Z}.
$$

We need to consider these zeros except at points where the denominator also vanishes (which could potentially cancel the zero or create a singularity). The denominator $z(z-1)^2$ has zeros at $z=0$ and $z=1$.

- At
$$
z = 0
$$
:

- Numerator: $\sin 0 = 0$.
- Denominator: $z = 0$, so the denominator is zero.
- Therefore, both numerator and denominator vanish at $z = 0$.

- At
$$
z = 1
$$
:

- Numerator: $\sin 1 \neq 0$.
- Denominator: $(z-1)^2=0$, so the denominator has a zero of order 2.

To determine the order of zeros of *f* at $z = n\pi$, with $n \neq 0$ we note that since sin *z* has simple zeros at $z = n\pi$ ($n \neq 0$), and the denominator does not vanish at these points, *f* has zeros of order 1 at these points.

At $z = 0$, both the numerator and the denominator vanish. To determine the behavior of $f(z)$ near $z = 0$, we can consider the limit:

$$
\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin z}{z(z-1)^2} = 1.
$$

To see this, one can use the Taylor series expansion $\sin z = z - \frac{z^3}{6} + \cdots$, near $z = 0$ to get

$$
\frac{\sin z}{z(z-1)^2} = \frac{1}{(z-1)^2} (1 - z^2/6 + \dots)
$$

which goes to 1 as *z* goes to 0. Therefore, $f(z)$ has an analytic extention to $z = 0$. Hence, $z = 0$ is a removable singularity, not a zero or pole.

The zeros of *f* are at $z = n\pi$ for $n \in \mathbb{Z}$ with $z \neq 0$, and each zero is of order 1.

(b) Find the poles of *f* and their order.

Solution: The poles of *f* occur at the zeros of the denominator that are not canceled by zeros of the numerator.

From the denominator $z(z-1)^2$, we have:

- At $z = 0$: As before both the numerator and the denominator vanish at $z = 0$, and as shown earlier, $f(z)$ has a removable singularity at $z = 0$.

$$
- \text{ At } z = 1:
$$

- Numerator: $\sin 1 \neq 0$.
- Denominator: $(z-1)^2=0$.
- The denominator has a zero of order 2, and the numerator does not vanish.

Therefore, $z = 1$ is a pole of order 2.

(c) Compute the integral

$$
\int_{\gamma} f\,dz,
$$

when γ is the circle of radius 2 centered in 0 positively oriented.

Solution: We will use the Residue Theorem, which states that if γ is a positively oriented simple closed contour enclosing a finite number of isolated singularities *a^k* of $f(z)$, then

$$
\int_{\gamma} f(z) dz = 2\pi i \sum \text{Res}_{z=a_k} f(z),
$$

where the sum is over all singularities a_k inside γ .

First, we identify the singularities inside the circle $|z|=2$.

- The singularities of $f(z)$ are at $z = 1$ (pole of order 2) and $z = 0$ (removable singularity). - As established earlier, $z = 0$ is a removable singularity, so it does not contribute to the integral. - Therefore, the only pole inside γ is at $z = 1$.

We need to compute $\text{Res}_{z=1} f(z)$.

Since the pole at $z = 1$ is of order 2, the residue is given by

$$
\text{Res}_{z=1} f(z) = \lim_{z \to 1} \frac{d}{dz} [(z-1)^2 f(z)].
$$

Compute $(z-1)^2 f(z)$:

$$
\Phi(z) = (z-1)^2 f(z) = (z-1)^2 \cdot \frac{\sin z}{z(z-1)^2} = \frac{\sin z}{z}.
$$

Now compute the derivative $\Phi'(z)$:

$$
\Phi'(z) = \frac{d}{dz} \left(\frac{\sin z}{z} \right) = \frac{z \cos z - \sin z}{z^2}.
$$

Then,

$$
\operatorname{Res}_{z=1} f(z) = \Phi'(1) = \frac{1 \cdot \cos 1 - \sin 1}{1^2} = \cos 1 - \sin 1.
$$

Therefore, the integral is

$$
\int_{\gamma} f(z) dz = 2\pi i \times \text{Res}_{z=1} f(z) = 2\pi i (\cos 1 - \sin 1).
$$

5. Open question Show that

$$
\int_0^{\pi} e^{\cos \theta} \cos(\sin \theta) d\theta = \pi.
$$

Solution: Let $f(z) = e^z/z$ and $\gamma(\theta) = e^{i\theta}, \ \theta \in [0, 2\pi]$. Then

$$
\int_{\gamma} \frac{e^z}{z} = i \int_0^{2\pi} e^{\cos \theta + i \sin \theta} d\theta
$$

$$
= i \int_0^{2\pi} e^{\cos \theta} [\cos(\sin \theta) + i \sin(\sin \theta)] d\theta
$$

On the other hand, using the reside formula yields $\int_{\gamma} \frac{e^z}{z} = 2\pi i$ since $f(z)$ has only one simple pole inside the disc, specifically at $z = 0$ with residue equal to $e^0 = 1$. Hence by taking the imaginary part of both sides we obtain $\int_0^{2\pi} e^{\cos \theta} \cos(\sin \theta) d\theta = 2\pi$. Using the symmetry of the function we conclude $\int_0^{\pi} e^{\cos \theta} \cos(\sin \theta) d\theta = \pi$.