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1. Multiple Choice Questions

(a) Let Ω be an open subset of C and f : Ω 7→ C a holomorphic function. Which of
the following is NOT enough to conclude that f is constant

⃝ Ω = C and |f(ix)| ≤ 1 for all x ∈ R.

⃝ Ω = C, and f(C) ∩ D1(0) = ∅

⃝ Ω = D1(0) and ℜ(f) is constant.

⃝ Ω = C and |f(z)| < |z|1/2 for |z| > 2024

Solution: (a) Take the function sin(iz). (b) is correct since f(C) ∩ D1(0) = ∅ imply
that 0 /∈ f(C) and 1/f is holomorphic and bounded. By Liouville’s theorem 1/f
hence f is constant. (c) is correct since the disc is connected. (see also Exercise
1.5(c)) (d) Follows using Cauchy inequalities which in this case gives for the power
series coefficients of f that |an| < r1/2/rn for any r > 2024. Letting r go to ∞ shows
that an = 0 for n ≥ 1.

(b) Which of the following statements is correct?

⃝ If f and g both have a pole at z0 with non zero residues than the function fg
has a pole at z0 with non zero residue.

⃝ If f and g both have a pole at z0 with non zero residues than the function f + g
has a pole at z0 with non zero residue.

⃝ f(z) = z2+2023z
sin(z) is bounded in a neighbourhood of 0.

⃝ f(z) = z5+1
z(z+1)2 has simple pole at z = 0 and a double pole at z = −1.

Solution: (a) and (b) are false: take f = g = 1/z and f = −g respectively. (d) is
false since z5 + 1 also has a simple zero at z = −1. (c) is correct since the singularity
at z = 0 is removable.

(c) Which formula holds true for ALL holomorphic functions f : C → C \ {0} and
ALL simple closed curves γ?

⃝
∫

γ f(z) dz = 0

⃝
∫

γ
f ′

f
dz = 0

⃝
∫

γ
f(z)

z
dz = 2πif(0)

⃝
∫

γ f ′′(z) dz = 2πif ′(0)
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Solution: The correct answer is (b) since f ′/f is holomorphic. Counterexamples:
(a) f(z) = z, γ = ∂D, (c) when 0 not in the interior of γ and f(0) ̸= 0, (d) f ′′ is
holomorphic and hence the RHS is always equal to zero.

(d) Let f, g, h : C → C three holomorphic functions such that f(0) = g(0) = h(0) = 0.
Then

⃝ ord0(fg + h) ≥ max{ord0(f) + ord0(g), ord0(h)}.

⃝ ord0(f 2gh) = 2 ord0(f) + ord0(g) + ord0(h)

⃝ ord0(f(1 + gh)) = ord0(f)(1 + ord0(g) + ord0(h))

⃝ ord0(fgh) = ord0(f) ord0(g) ord0(h)

Solution: The correct solution is (b). Counterexamples: (a) f and g identically zero,
h = z, (c) and (d) f = g = h = z

(e) Let f(z) = ez

z−2 . Which of the following statements is NOT correct. All circles
are positively oriented.

⃝
∫

|z|=1 f(z)dz = 0.

⃝
∫

|z|=3 f(z)dz = 2πie2.

⃝
∫

|z|=1
f ′(z)
f(z) dz = 2πi.

⃝
∫

|z|=3
f(z)
z−2 dz = 2πie2.

Solution: The correct solution is (c). It should be 0 since f has no zeroes or poles
inside |z| = 1

(f) Which of the following functions is NOT holomorphic?

⃝ f(z) = z2024 + 3.

⃝ f(x + iy) = (cos(x) + isin(x))e−y.

⃝ f(x + iy) = x2 − y2 + x + i(y + 2xy)

⃝ f(x + iy) = x − iy + 2.

Solution: The correct solution is (d), since x − iy + 2 = z̄ + 2.
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2. Open question

(a) Let α ∈ C be a fixed non-zero complex number. Construct a non-constant
holomorphic function f : C 7→ C such that f(z + α) = f(z) for all z ∈ C.

Hint: consider first the case α = 2πi.

Solution: Consider the function f(z) = ez. We check if f(z + 2πi) = f(z):

f(z + 2πi) = ez+2πi = ez · e2πi = ez.

Since e2πi = 1, it follows that f(z + 2πi) = f(z). This satisfies the periodicity
condition for α = 2πi.

For any α ∈ C \ {0}, we can take the function:

f(z) = e
2πi
α

z.

Then,

f(z + α) = e
2πi
α

(z+α) = e
2πi
α

z · e2πi = e
2πi
α

z = f(z).

(b) Show that if a holomorphic function f : C 7→ C satisfies the relations f(z + 1) =
f(z) and f(z + i) = f(z) for all z ∈ C, then f is constant.

Solution: Let Q = [−1, 1]2 be the closed square centered at 0 with side length 1.
Since Q is compact, we have:

sup
z∈Q

|f(z)| =: B < ∞.

For any z ∈ C, there exist integers n, k ∈ Z such that z + n + ik ∈ Q. Using the
periodicity conditions f(z + 1) = f(z) and f(z + i) = f(z) repeatedly, we get:

f(z) = f(z + n + ik) ⇒ |f(z)| ≤ B.

Hence, f is bounded on C. By Liouville’s theorem, which states that a bounded entire
function must be constant, we conclude that f is constant.

3. Open question If f is holomorphic on 0 < |z| < 2 and satisfies f( 1
n
) = n2 and

f(−1
n

) = n3 for all positive integers n, show that f has an essential singularity at 0.

Hint: show that f can have neither a removable singularity nor a pole at 0.
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Solution: Since f(1/n) = n2, f is unbounded near 0. hence by Riemann’s theorem
on removable singularities 0 is not removable. Assume on the contrary f has a pole of
order k ≥ 1 at 0. Then in a neighnourhood of zero, there is a holomorphic function g
such that g(0) ̸= 0 and

f(z) = z−kg(z).

Let z = 1/n then n2 = g(1/n)nk. Now letting n go to infinity gives k = 2. On the
other hand using z = −1/n gives n3 = g(−1/n)nk and letting n go to infinity gives
k = 3. Since the order of a pole is unique, this is a contradiction. Hence f does not
have a pole either.

4. Open question Consider the function

f(z) = sin z

z(z − 1)2 .

(a) Find the zeros of f and their order.

Solution: The zeros of f are the zeros of the numerator sin z that are not canceled
by zeros of the denominator. The zeros of sin z occur at

z = nπ, n ∈ Z.

We need to consider these zeros except at points where the denominator also vanishes
(which could potentially cancel the zero or create a singularity). The denominator
z(z − 1)2 has zeros at z = 0 and z = 1.

- At z = 0:

• Numerator: sin 0 = 0.

• Denominator: z = 0, so the denominator is zero.

• Therefore, both numerator and denominator vanish at z = 0.

- At z = 1:

• Numerator: sin 1 ̸= 0.

• Denominator: (z − 1)2 = 0, so the denominator has a zero of order 2.
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To determine the order of zeros of f at z = nπ, with n ̸= 0 we note that since sin z
has simple zeros at z = nπ (n ≠ 0), and the denominator does not vanish at these
points, f has zeros of order 1 at these points.

At z = 0, both the numerator and the denominator vanish. To determine the behavior
of f(z) near z = 0, we can consider the limit:

lim
z→0

f(z) = lim
z→0

sin z

z(z − 1)2 = 1.

To see this, one can use the Taylor series expansion sin z = z − z3

6 + · · ·, near z = 0
to get

sin z

z(z − 1)2 = 1
(z − 1)2 (1 − z2/6 + · · · )

which goes to 1 as z goes to 0. Therefore, f(z) has an analytic extention to z = 0.
Hence, z = 0 is a removable singularity, not a zero or pole.

The zeros of f are at z = nπ for n ∈ Z with z ̸= 0, and each zero is of order 1.

(b) Find the poles of f and their order.

Solution: The poles of f occur at the zeros of the denominator that are not canceled
by zeros of the numerator.

From the denominator z(z − 1)2, we have:

- At z = 0: As before both the numerator and the denominator vanish at z = 0, and
as shown earlier, f(z) has a removable singularity at z = 0.

- At z = 1:

• Numerator: sin 1 ̸= 0.

• Denominator: (z − 1)2 = 0.

• The denominator has a zero of order 2, and the numerator does not vanish.

Therefore, z = 1 is a pole of order 2.

(c) Compute the integral∫
γ

f dz,

when γ is the circle of radius 2 centered in 0 positively oriented.
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Solution: We will use the Residue Theorem, which states that if γ is a positively
oriented simple closed contour enclosing a finite number of isolated singularities ak of
f(z), then∫

γ
f(z) dz = 2πi

∑
Resz=ak

f(z),

where the sum is over all singularities ak inside γ.

First, we identify the singularities inside the circle |z| = 2.

- The singularities of f(z) are at z = 1 (pole of order 2) and z = 0 (removable
singularity). - As established earlier, z = 0 is a removable singularity, so it does not
contribute to the integral. - Therefore, the only pole inside γ is at z = 1.

We need to compute Resz=1 f(z).

Since the pole at z = 1 is of order 2, the residue is given by

Resz=1 f(z) = lim
z→1

d

dz

[
(z − 1)2f(z)

]
.

Compute (z − 1)2f(z):

Φ(z) = (z − 1)2f(z) = (z − 1)2 · sin z

z(z − 1)2 = sin z

z
.

Now compute the derivative Φ′(z):

Φ′(z) = d

dz

(sin z

z

)
= z cos z − sin z

z2 .

Then,

Resz=1 f(z) = Φ′(1) = 1 · cos 1 − sin 1
12 = cos 1 − sin 1.

Therefore, the integral is∫
γ

f(z) dz = 2πi × Resz=1 f(z) = 2πi(cos 1 − sin 1).
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5. Open question Show that∫ π

0
ecos θ cos(sin θ)dθ = π.

Solution: Let f(z) = ez/z and γ(θ) = eiθ, θ ∈ [0, 2π]. Then

∫
γ

ez

z
= i

∫ 2π

0
ecos θ+i sin θdθ

= i
∫ 2π

0
ecos θ[cos(sin θ) + i sin(sin θ)]dθ

On the other hand, using the reside formula yields
∫

γ
ez

z
= 2πi since f(z) has only

one simple pole inside the disc, specifically at z = 0 with residue equal to e0 = 1.
Hence by taking the imaginary part of both sides we obtain

∫ 2π
0 ecos θ cos(sin θ)dθ = 2π.

Using the symmetry of the function we conclude
∫ π

0 ecos θ cos(sin θ)dθ = π.
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