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Exercises with a ⋆ are eligible for bonus points. Exactly one answer to each MC
question is correct.

3.1. MC Questions

(a) For which values of z ∈ C is cos(z) a real number?

A) Only for z = x with x ∈ R.

B) Only for z = x + iy with y = 0 and x = nπ for some n ∈ Z.

C) Only for z = iy with y ∈ R.

D) Only for z = x + iy with y = 0 or x = nπ for some n ∈ Z.

Solution: We use the equality

cos(z) = cos(x + iy) = cos(x) cosh(y) − i sin(x) sinh(y),

from which we deduce that the values of z for which cos(z) is real are:

z = x with x ∈ R, or z = nπ + iy with y ∈ R and n ∈ Z.

(b) Let a, b ∈ C with a ≠ b. Define ν = a−b
|a−b| and let γ be a parametrization of the

line segment from a to b. Moreover, let f : C → C be a continuous function. Which
of the following equalities holds?

A)
∫

γ f(z)dz =
∫ |b−a|

0 f(a + tν)dt

B)
∫

γ f(z)dz = (b − a)
∫ 1

0 f(a(1 − t) + bt)dt

C)
∫

γ f(z)dz =
∫ 1

0 f(a(1 − t) + bt)dt

D)
∫

γ f(z)dz =
∫ |b|

|a| f(tν)dt

Solution: We can parametrize the segment from a to b as γ(t) = a+t(b−a), t ∈ [0, 1].
Then, the differential dz is given by dz = γ′(t)dt = (b − a)dt.

Now, we compute the integral over γ:∫
γ

f(z)dz =
∫ 1

0
f(γ(t))γ′(t)dt =

∫ 1

0
f(a + t(b − a))(b − a)dt

Thus, the correct equality is
∫

γ f(z)dz = (b − a)
∫ 1

0 f(a(1 − t) + bt)dt
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3.2. Complex line integrals

(a) Compute
∫

γ cos(ℑ(z)) dz, when γ is the unit circle {z ∈ C : |z| = 1}.

Solution: By parametrizing the unit circle using γ(t) = eit, where t ∈ [0, 2π], we
have:

z = γ(t) = eit, dz = γ′(t) dt = ieit dt = (− sin(t) + i cos(t)) dt.

Also, the imaginary part of z = eit is ℑ(z) = sin(t). Thus, the integral becomes:∫
γ

cos(ℑ(z)) dz =
∫ 2π

0
cos(sin(t))(− sin(t) + i cos(t)) dt.

We can split this into the real and imaginary parts:∫ 2π

0
cos(sin(t))(− sin(t)+i cos(t)) dt = −

∫ 2π

0
cos(sin(t)) sin(t) dt+i

∫ 2π

0
cos(sin(t)) cos(t) dt.

Now, for the imaginary part:

i
∫ 2π

0
cos(sin(t)) cos(t) dt = i [sin(sin(t))]2π

0 = i(sin(sin(2π))−sin(sin(0))) = i(0−0) = 0.

For the real part, we use the symmetry of the integrand. The function cos(sin(t)) sin(t)
is odd on [0, 2π] because:

cos(sin(π + t)) sin(π + t) = − cos(sin(t)) sin(t).

Thus, the real part integrates to zero:

−
∫ 2π

0
cos(sin(t)) sin(t) dt = 0.

Therefore, the entire integral evaluates to:∫
γ

cos(ℑ(z)) dz = 0.

(b) Compute
∫

γ(z̄)k dz for any k ∈ Z and when γ is the unit circle {z ∈ C : |z| = 1}.

Solution: Notice that on the unit circle z̄ is equal to z−1 because zz̄ = |z|2 = 1.
Hence, when k ̸= 1, we have that∫

γ
(z̄)k dz =

∫
γ

z−k dz = 0,

since then z−k admits the primitive z−k+1/(−k + 1), and γ is a closed curve. When
k = 1 then we have that∫

γ
z̄ dz =

∫
γ

z−1 dz =
∫ 2π

0

ieit

eit
dt = 2πi.
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(c) Compute
∫

γ(z2024 + πz13 + 1) dz, when γ is the spiral {1 + teiπt : t ∈ [0, 1]}.

Solution: The argument is a polynomial expression, and therefore we can easily find
a primitive

F (z) = z2025

2025 + πz14

14 + z.

Hence, the integral over γ depends only on its end points:∫
γ
(z2024 + πz13 + 1) dz =

∫
γ

F ′ dz = F (γ(1)) − F (γ(0)) = F (0) − F (1)

= −F (1) = − 1
2025 − π

14 − 1.

3.3. Show that exp(C) = C \ {0}. What’s the image of cos : C → C?

Solution: Using the polar form z = reiθ, it is easy to see that C \ {0} ⊆ exp(C). For
the converse, we must show that there is no α ∈ C such that eα = 0. We know:

|eα| = |ea+ib| = |ea| · |eib| = |ea| ≠ 0,

so eα ̸= 0.

We claim that cos(C) = C. For any α ∈ C, the equation

α = cos(z) = eiz + e−iz

2
is quadratic in w = eiz. It is easy to see that this equation has a nonzero solution.
Therefore, cos(C) = C.

3.4. Let MNPQ be a rectangle on the complex plane whose sides are parallel to
the x-axis and y-axis. It is divided into smaller rectangles whose sides are parallel
to the axes as well. It is known that each smaller rectangle has at least one side
(horizontal or vertical) whose length belongs to the integers. Prove that MNPQ also
has at least one side of integer length.

Hint:
∫ b

a e2πixdx = 0 ⇐⇒ b − a ∈ Z

Solution: Let us define a function F for any general rectangle on the complex plane
whose sides are parallel to the x- and y-axes. For a rectangle with opposite corners at
(x1, y1) and (x2, y2), define F as the product of two integrals:

F (x1, x2, y1, y2) =
(∫ x2

x1
e2πix dx

)(∫ y2

y1
e2πiy dy

)
.
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Each integral is similar to the one in the hint:∫ b

a
e2πix dx = 0 ⇐⇒ b − a ∈ Z.

Thus, F (x1, x2, y1, y2) = 0 if and only if one of the two sides of the rectangle has an
integer length.

Now, consider a situation where a large rectangle is divided into two smaller rectangles
sharing an edge. We claim that the function F is additive over such divisions.
Specifically, the value of F over the large rectangle is the sum of the F values over
the smaller rectangles. This can be shown as follows: let the original rectangle have
opposite corners at (x1, y1) and (x2, y2). Suppose WLOG it is divided along the x-axis
at x = x3. The function for the original rectangle is defined as:

F (x1, x2, y1, y2) =
(∫ x2

x1
e2πix dx

)(∫ y2

y1
e2πiy dy

)
.

Now, we divide the rectangle into two smaller rectangles: - Rectangle 1: From (x1, y1)
to (x3, y2),

F (x1, x3, y1, y2) =
(∫ x3

x1
e2πix dx

)(∫ y2

y1
e2πiy dy

)
.

- Rectangle 2: From (x3, y1) to (x2, y2),

F (x3, x2, y1, y2) =
(∫ x2

x3
e2πix dx

)(∫ y2

y1
e2πiy dy

)
.

Summing the two smaller rectangles’ contributions, we have:

F (x1, x3, y1, y2) + F (x3, x2, y1, y2) =
(∫ x3

x1
e2πix dx +

∫ x2

x3
e2πix dx

)(∫ y2

y1
e2πiy dy

)
.

Since:∫ x2

x1
e2πix dx =

∫ x3

x1
e2πix dx +

∫ x2

x3
e2πix dx,

we conclude that:

F (x1, x2, y1, y2) = F (x1, x3, y1, y2) + F (x3, x2, y1, y2).

Thus, F is additive when a rectangle is divided into two smaller rectangles.
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Next, we consider a general decomposition of the rectangle MNPQ into smaller
rectangles. We can reduce the decomposition into a "grid" decomposition, as this
is done by splitting all rectangles at every distinct x-coordinate and y-coordinate
that appears in the decomposition. This ensures that all the rectangles in this new
decomposition share a whole edge with each of their neighbour, and notice that the
sum of F over all the rectangles remained unchanged (again by additivity). Therefore,
the sum of the values F over all the smaller rectangles is also zero, which implies that
F for the original rectangle is zero, as we can easily merge two rectangles sharing a
full edge at the time and finally obtain the rectangle MNPQ.

Phase 1: General Decomposition Phase 2: Grid Decomposition

R1 R2

R3 R4

Step 1: 4 small rectangles

R1 + R2

R3 + R4

Step 2: Merge

R1 + R2 + R3 + R4

Step 3: Merge

3.5. ⋆ Harmonicity

(a) A real C2-function w = w(x, y) : R2 → R is said to be harmonic if its Laplacian
∆w = div(∇w) := ∂2w

∂x2 + ∂2w
∂y2 is equal to zero everywhere. Let f : C → C be an

holomorphic function. Denote with u = ℜ(f) and v = ℑ(f) the real part and
imaginary part of f , so that f(z) = u(z) + iv(z) for every z ∈ C. Show that both u
and v are harmonic functions by identifying C with R2.

Solution: Differentiating the first Cauchy-Riemann equation ∂u
∂x

= ∂v
∂y

in the y-
direction, interchanging the order of differentiation and taking advantage of the
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second Cauchy-Riemann equation ∂u
∂y

= − ∂v
∂x

one gets that

∂2u

∂2x
= ∂2v

∂x∂y
= ∂2v

∂y∂x
= −∂2u

∂2y
,

which implies ∆u = 0. The same works for v by starting with the second Cauchy-
Riemann equation differentiated in the y direction.

(b) Let D be the unit disk centered at the origin and let h : D → R be a C∞ harmonic
function. Show that there exists some holomorphic function F : D → C such that
h = ℜ(F ).

Solution: In what follows, we use hx = ∂h
∂x

and similarly hy = ∂h
∂y

. Using h we define
the function

f(x + iy) = hx(x, y) − i · hy(x, y)

with real part u(x, y) = hx(x, y) and imaginary part v(x, y) = −hy(x, y). As h is
harmonic one has ux ≡ vy, furthermore uy ≡ −vx by equality of the mixed derivatives.
So f : D → C is C∞ and satisfies the CR equations; therefore it is an analytic function
of z = x + iy ∈ D.

Now, by Theorem 2.1 in the notes, we know that the function f has a primitive F in
D.

Let (x, y) 7→ U(x, y) be the real part of F . Then by the CR equations, this time
applied to F , we have that, for all z ∈ D,

Ux(z) − iUy(z) = F ′(z) = f(z) = hx(z) − ihy(z).

Let g(x, y) := U(x, y) − h(x, y). Then gx = gy = 0 and it follows by exercise 5(a) of
Serie 1 that in fact in D, U(x, y) = h(x, y) + C for some constant C. Hence h is the
real part of the holomorphic function F (z) + C.

3.6. ⋆ Real integrals via complex integration

(a) (i) Show that
∫ ∞

0

sin(x)
x

dx = lim
R→+∞

1
2i

∫ R

−R

eix − 1
x

dx.

Solution: By writing

1
2i

∫ R

−R

eix − 1
x

dx = 1
2i

∫ R

−R

cos(x) − 1 + i sin(x)
x

dx
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and taking the limit for R → ∞ we get

lim
R→∞

1
2i

∫ R

−R

eix − 1
x

dx = 1
2i

∫ ∞

−∞

cos(x) − 1
x

dx + 1
2

∫ ∞

−∞

sin(x)
x

dx.

The first integral vanishes as we’re integrating an odd function over an around 0
symmetric domain. By using the fact that sin(x)

x
is instead even, we can write

1
2

∫ ∞

−∞

sin(x)
x

dx =
∫ ∞

0

sin(x)
x

dx.

(ii) Let R > 0 be large and ε > 0 be small. Explain why
∫

γ

eiz − 1
z

dz = 0,

where γ is the "indented semicircle" curve described in the picture below.

Solution: We note that the function z 7→ eiz−1
z

is holomorphic in C \ {0}. Since
γ and the region it includes do not contain 0, we can apply Cauchy’s theorem
and get the wanted result.

(iii) Deduce the value of
∫ ∞

0

sin(x)
x

dx.

Solution: Using the previous items, we have:
∫ R

ε

eix − 1
x

dx +
∫ −ε

−R

eix − 1
x

dx = −
∫

γ+
R

eiz − 1
z

dz +
∫

γ+
ε

eiz − 1
z

dz.

Let us analyze the first integral. We parametrize γR as γR : [0, π] → C, z 7→ Rezi.
Obtaining
∫

γ+
R

eiz − 1
z

dz = i
∫ π

0
(eiR cos(t)−R sin(t) − 1)dt = −πi + i

∫ π

0
eiR cos(t)−R sin(t)dt.

Observe that
|
∫ π

0
eiR cos(t)−R sin(t)dt| ≤

∫ π

0
e−R sin(t)dt,

as well as
lim

R→∞

∫ π

0
e−R sin(t)dt = 0,
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which concludes the analysis of the first integral. Analogously, for the second
one, we get ∫

γ+
ε

eiz − 1
z

dz = −πi + i
∫ π

0
eiε cos(t)e−ε sin(t)dt.

Again, by uniform convergence on a bounded domain, we can write

lim
ε→0

∫ π

0
eiε cos(t)−ε sin(t)dt =

∫ π

0
lim
ε→0

eiε cos(t)−ε sin(t)dt = π,

which yields the desired result.

(b) Let γ be the counter clockwise oriented unit circle and n ∈ N. Compute∫
γ

z−1(z − z−1)n dz,

and deduce that
∫ 2π

0
sin(t)n dt =

{
π

2n−1

(
n

n/2

)
, if n is even

0 if n is odd

Solution: Using the binomial expansion for (z − z−1)n, we have:

(z − z−1)n =
n∑

k=0

(
n

k

)
(−1)kzn−2k.

Thus, the integral becomes:
∫

γ
z−1(z − z−1)n dz =

n∑
k=0

(
n

k

)
(−1)k

∫
γ

zn−2k−1 dz.
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By Cauchy’s integral theorem,
∫

γ zm dz = 0 unless m = −1. Therefore, the only
non-zero contribution occurs when:

n − 2k − 1 = −1 ⇒ 2k = n ⇒ k = n

2 .

Thus, for odd n, there is no integer k that satisfies this condition, and the integral is
zero. For even n, we have k = n

2 , so the integral becomes:∫
γ

z−1(z − z−1)n dz =
(

n

n/2

)
(−1)n/2

∫
γ

z−1 dz.

Since
∫

γ z−1 dz = 2πi, we conclude that for even n,∫
γ

z−1(z − z−1)n dz =
(

n

n/2

)
(−1)n/22πi.

Now, let’s compute the integral in terms of trigonometric functions. Using the
substitution z = eit, we get:

z − z−1 = eit − e−it = 2i sin(t).

Thus, the integral becomes:∫
γ

z−1(z − z−1)n dz =
∫ 2π

0
ieite−it(2i sin(t))n dt = i

∫ 2π

0
(2i sin(t))n dt.

For odd n, since sin(t)n is an odd function, the integral over [0, 2π] vanishes, confirming
that: ∫ 2π

0
sin(t)n dt = 0 for odd n.

For even n = 2m, we have:

i
∫ 2π

0
(2i)n sin(t)n dt = (−1)m2n

∫ 2π

0
sin(t)2m dt.

Equating this with the earlier result
(

n
n/2

)
(−1)m2πi, we get:

∫ 2π

0
sin(t)2m dt = π

22m−1

(
2m

m

)
.

Thus, we deduce that:∫ 2π

0
sin(t)n dt =

{
π

2n−1

(
n

n/2

)
, if n is even,

0, if n is odd.

9/9


