Exercises with $a \star a$ re eligible for bonus points. Exactly one answer to each MC question is correct.

4.1. MC Questions

- (a) What's the value of $\int_0^{2\pi} e^{e^{it} + it} dt$?
- A) 2*π*
- B) 0
- C) -2π
- D) 4*π*

Solution: Express this as a line integral over the unit circle $z = e^{it}$.

$$
\int_0^{2\pi} e^{e^{it}} e^{it} dt = -i \int_0^{2\pi} e^{e^{it}} i e^{it} dt = -i \int_{|z|=1} e^z dz = 0.
$$

- **(b)** Given $\gamma = \{z \in \mathbb{C} : |z| = 3\}$, what's the value of $\int_{\gamma} \frac{z^2 + 2z}{z^2 1}$ $\frac{z^2+2z}{z^2-1}$ *dz* ?
- A) 6*πi*
- B) -6π
- C) 4*πi*
- D) $\frac{3}{2}π*i*$

Solution: We have that

$$
\int_{\gamma} \frac{z^2 + 2z}{z^2 - 1} dz = \frac{1}{2} \int_{\gamma} \frac{3z}{z - 1} + \frac{-z}{z + 1} dz
$$

$$
= \frac{2\pi i}{2} (3 - (-1)) = 4\pi i,
$$

by applying the Cauchy integral formula to both terms in the second integral.

4.2. An analytic identity Let γ be the counter-clockwise oriented circle of radius $r > 0$ and center $z_0 \in \mathbb{C}$, and let f be a function which is analytic in all of \mathbb{C} . Show that

$$
\int_{\gamma} f(\bar{z}) dz = 2\pi i r^2 f'(\bar{z}_0).
$$

 $1/5$ $1/5$

Solution: Let $f: \mathbb{C} \to \mathbb{C}$ analytic and $z_0 \in \mathbb{C}$ with $\overline{z_0} \in \mathbb{C}$, $r > 0$ such that the closed disc of radious r and center $\overline{z_0}$ is contained in $\mathbb C$. Then

$$
\int_{|z-z_0|=r} f(\overline{z})dz = 2\pi i r^2 f'(\overline{z_0}).
$$

Indeed, we have a nicely convergent series expansion $f(z) = \sum a_n(z - \overline{z_0})^n$ for $z \in \mathbb{C}$ with $|z - \overline{z_0}| < r + \varepsilon$ for some $\varepsilon > 0$ (ε exists because $\mathbb C$ is open and f is analytic in C). Define

$$
g(z) = \sum \overline{a_n}(z - z_0)^n, \text{ for } |z - z_0| < r + \varepsilon.
$$

Then *g* is analytic where it's defined. We also have $f(\overline{z}) = \overline{g(z)}$ hence

$$
\int_{|z-z_0|=r} f(\overline{z})dz = \frac{\int_{|z-z_0|=r} \overline{g(z)}dz}{\int_{|z-z_0|=r} g(z)\overline{dz}}
$$
\n
$$
= \frac{\int_{|z-z_0|=r} \overline{g(z_0+re^{it})}\overline{ire^{it}}dt}{\int_{0}^{2\pi} \overline{g(z_0+re^{it})}\overline{ire^{it}}dt}
$$
\n
$$
= -r^2 \frac{\int_{|z-z_0|=r}^{2\pi} \overline{g(z)}}{(re^{it})^2}\overline{ie^{it}}dz.
$$

By Cauchy's formula (the general one involving derivatives), the last integral equals

$$
2\pi i g'(z_0) = 2\pi i \overline{a_1} = 2\pi i \overline{f'(\overline{z_0})},
$$

hence we get

Z

$$
\int_{|z-z_0|=r} f(\overline{z})dz = -r^2 \overline{2\pi i f'(\overline{z_0})} = 2\pi i r^2 f'(\overline{z_0}).
$$

4.3. Let $r > 0$. Show the estimate

$$
\left| \int_{\gamma} e^{iz^2} dz \right| \le \frac{\pi (1 - e^{-r^2})}{4r},
$$

where γ is the curve with $\gamma(t) = re^{it}$, for $0 \le t \le \pi/4$

Solution: We begin by using a standard inequality for integrals of complex functions. For any integrable function $f : [a, b] \to \mathbb{C}$, the following inequality holds:

$$
\left| \int_a^b f(z) \, dz \right| \le \int_a^b |f(z)| \, |dz|.
$$

2/[5](#page-4-0)

Given that the curve is given by $\gamma(t) = re^{it}$, we parametrize the integral as:

$$
z(t) = re^{it}, \quad \text{for } t \in \left[0, \frac{\pi}{4}\right].
$$

Thus, we have $dz = ire^{it}dt$, and $|dz| = rdt$. Next, we compute the modulus of e^{iz^2} . First, calculate z^2 for $z = re^{it}$:

$$
z^2 = r^2 e^{2it} = r^2(\cos(2t) + i\sin(2t)).
$$

Thus, the real part of *iz*² is

$$
\Re(iz^2) = \Re\left(ir^2(\cos(2t) + i\sin(2t))\right) = -r^2\sin(2t).
$$

Therefore, we have

$$
|e^{iz^2}| = e^{\Re(iz^2)} = e^{-r^2 \sin(2t)}.
$$

Now, we estimate the original integral:

$$
\left| \int_{\gamma} e^{iz^2} dz \right| \leq \int_{\gamma} |e^{iz^2}| |dz| = \int_0^{\frac{\pi}{4}} e^{-r^2 \sin(2t)} r dt.
$$

We substitute $u = 2t$, which implies $du = 2dt$. The limits of integration change accordingly: when $t = 0$, $u = 0$, and when $t = \frac{\pi}{4}$ $\frac{\pi}{4}$, $u = \frac{\pi}{2}$ $\frac{\pi}{2}$. Thus, the integral becomes:

$$
\int_0^{\frac{\pi}{4}} e^{-r^2 \sin(2t)} r dt = \frac{r}{2} \int_0^{\frac{\pi}{2}} e^{-r^2 \sin(u)} du.
$$

Since for $0 \le u \le \pi/2$, $\sin(u) \ge \frac{2u}{\pi}$ we have that

$$
\left|\int_{\gamma}e^{iz^2}dz\right|\leq \frac{r}{2}\int_{0}^{\frac{\pi}{2}}e^{-r^2\sin(u)}\,du\leq \frac{r}{2}\int_{0}^{\frac{\pi}{2}}e^{-2ur^2/\pi}\,du=\frac{\pi(1-e^{-r^2})}{4r}.
$$

4.4. \star **Converse of Theorem 3.2, Chapter 1** Suppose that a function f is continuous on a plane domain Ω in $\mathbb C$ and that $\int_{\gamma} f(z) dz = 0$ for every closed piecewise smooth path on Ω . Show that *f* has a primitive in Ω .

Solution: Let $z_0 \in \Omega$ be a fixed point. For any point $z \in \Omega$, we define the function $F(z)$ as the integral of f along a smooth path from z_0 to z. More precisely, for a smooth path $\gamma : [0, 1] \to \Omega$ such that $\gamma(0) = z_0$ and $\gamma(1) = z$, we define:

$$
F(z) = \int_{\gamma} f(w) \, dw.
$$

To show that $F(z)$ is well-defined, suppose γ_1 and γ_2 are two smooth paths from z_0 to *z* in Ω. Consider the closed curve Γ formed by following $γ_1$ from z_0 to *z*, and then following γ_2 in reverse from *z* back to z_0 . Since Γ is a closed piecewise smooth path in Ω , and by the given condition of the problem, we know that:

$$
\int_{\Gamma} f(w) \, dw = 0.
$$

Now, using the linearity of the integral, we can split the integral over Γ as:

$$
\int_{\Gamma} f(w) \, dw = \int_{\gamma_1} f(w) \, dw - \int_{\gamma_2} f(w) \, dw = 0,
$$

which implies that

$$
\int_{\gamma_1} f(w) \, dw = \int_{\gamma_2} f(w) \, dw.
$$

Thus, the value of $F(z)$ is independent of the choice of path, so $F(z)$ is well-defined.

Next, we need to show that *F* is holomorphic in Ω , and that $F'(z) = f(z)$ for all $z \in \Omega$. Fix an arbitrary point $z \in \Omega$, and consider a small open disk *D* centered at *z*, such that $D \subset \Omega$. For any point $z' \in D$, we want to compute $F(z')$. To do this, choose a smooth path from z_0 to z' that goes through z . Specifically, we can take the path to consist of two parts: one path from z_0 to z , and then another path from *z* to *z* ′ within *D*. We know that since *f* is continuous and satisfies the condition $\int_{\gamma} f(z) dz = 0$ for all closed curves γ in $D \subset \Omega$, its integral along rectangles whose sides are parallel to the coordinate axis is also zero. Hence by Theorem 2.1' from the notes, f admits a primitive in D . That is, there exists a holomorphic function $G: D \to \mathbb{C}$ such that $G'(z) = f(z)$ for all $z \in D$.

Thus, for any $z' \in D$, we can compute $F(z')$ as:

$$
F(z') = F(z) + \int_{z}^{z'} f(w) \, dw = F(z) + G(z') - G(z),
$$

where the second equality follows from the fact that $G'(w) = f(w)$ in *D*.

Differentiating both sides with respect to z' , we get:

$$
F'(z') = G'(z') = f(z').
$$

Therefore, $F'(z) = f(z)$ for all $z \in \Omega$.

4.5. ★ **Application of Liouville's theorem** Let f and q be entire functions such that, for all $z \in \mathbb{C}$, $\Re(f(z)) \leq k \Re(g(z))$ for some real constant k, independent of z. Prove that there are constants *a*, *b* such that $f(z) = a g(z) + b$

Solution: Consider the function $h(z) = e^{f(z)-kg(z)}$, where $f(z)-kg(z)$ is the difference of two entire functions. Since the sum or difference of entire functions is entire, $f(z) - kg(z)$ is an entire function. The exponential of an entire function is also entire, so $h(z) = e^{f(z)-kg(z)}$ is entire.

Now, let's examine the modulus of $h(z)$. We have:

$$
|h(z)| = |e^{f(z)-kg(z)}| = e^{\Re(f(z)-kg(z))}.
$$

By the given condition, we know that $\Re(f(z)) \leq k \Re(g(z))$ for all $z \in \mathbb{C}$. Therefore,

$$
\Re(f(z)) - k \Re(g(z)) \le 0.
$$

This implies that

$$
|h(z)| = e^{\Re(f(z)) - k\Re(g(z))} \le 1
$$

for all $z \in \mathbb{C}$. We have shown that $h(z) = e^{f(z) - kg(z)}$ is an entire function and that $|h(z)| \leq 1$ for all $z \in \mathbb{C}$. By Liouville's Theorem, any bounded entire function must be constant. Hence, $h(z) = C$, where *C* is a constant. Since $h(z) = C$, we have:

$$
e^{f(z)-kg(z)} = C.
$$

Therefore, there exists some constant $b \in \mathbb{C}$ such that

$$
f(z) - kg(z) = b.
$$

Thus, we conclude that:

$$
f(z) = kg(z) + b.
$$