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5.1. MC Questions

(a) A subset A of a domain Ω ⊂ C is called discrete in Ω if it has no limit point in
Ω. For how many of the following pairs (Ω, A) is it not true that A is discrete in Ω?

(i) Ω = C. Define qn = ∑n
k=1

1
k

and A = ⋃
n∈N{qneix : x = k2π

n
for some k ∈ N}.

(ii) Ω = C. Define qn = ∑n
k=1

1
k2 and A = ⋃

n∈N{qneix : x = k2π
n

for some k ∈ N}.

(iii) Ω = C, A = { 1
n

: n ∈ N+}.

(iv) Ω = C\{0}, A = { 1
n

: n ∈ N+}.

A) 0

B) 1

C) 2

D) 3

Solution: In options (iii) and (iv), 0 is clearly the only accumulation point for the
set A in C. Only (iii) should be counted in the answer, as in (iv) we have that 0 /∈ Ω.
We now claim that in option (i), the set is discrete in Ω. Indeed, any bounded subset
of C contains at most finitely many points from A, as limn→∞ qn = ∞. The same
can’t be said about option (ii): given that limn→∞ qn = π2

6 we have for instance that
π2

6 is an accumulation point for A. All in all, two out of the four sets are discrete and
two are not.

(b) Let f : Ω → C be a non-constant holomorphic function on an open set Ω . For
w ∈ C we define the set

Ew := {z ∈ Ω : f(z) = w.}

Which of the following is true?

A) Ew is a discrete set in Ω only for w = 0.

B) Ew is a discrete set in Ω only for w ̸= 0.

C) Ew is a discrete set in Ω for every w ∈ C.

D) If Ω is connected then Ew is a discrete set in Ω for every w ∈ C.
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Solution: We start by proving that D) holds. Let Ω ⊆ C be open and connected,
and fix w ∈ Ω. Define g : Ω → C as g(z) = f(z) − w. Then Ew = {z ∈ Ω : f(z) =
w} = {z ∈ Ω : f(z) − w = 0} = {z ∈ Ω : g(z) = 0}. Since g is also non-constant and
holomorphic, we know that its set of zeros has to be discrete (all zeros are isolated),
and consequently Ew is also discrete. On the other hand, option C) is false since
if Ω is not connected then we can easily define a locally constant but non-constant
holomorphic function f , which, being locally constant, clearly doesn’t satisfy the fact
that Ew is a discrete set in Ω for every w ∈ C. Since the value taken by f in the part
of the domain on which it is locally constant is arbitrary, A) and B) are also proven
to be false.

5.2. Order of zeros

(a) Find the zeros of the function z 7→ sin(z2) and determine their order.

Solution: Taking advantage of the definition of complex sine, we have that sin(z2
0) = 0

if z0 = 0 or z0 = ±
√

kπ or z0 = ±i
√

kπ for some k ≥ 1. Consider now (sin(z2))′ =
2z cos(z2). Among the possible values for z0 we just mentioned, we have that
(sin(z2

0))′ = 0 ⇐⇒ z0 = 0, so all the other zeroes have order 1. Computing
(sin(z2

0))′′|z0=0 ̸= 0 allows us to conclude that 0 has order 2.

(b) Let p(z) := 1 + a1z + · · · + anzn be a polynomial and f(z) := ez − p(z). Clearly
z0 = 0 is a zero of the function f(z). Compute ordz0f , the order of the zero of f at
z0, as a function of the coefficients of p(z).

Solution: The Taylor series expansion of ez around z = 0 is:

ez =
∞∑

k=0

zk

k! = 1 + z + z2

2! + z3

3! + · · · .

The function we are investigating is:

f(z) = ez − p(z).

We subtract the polynomial p(z) from the Taylor series of ez:

f(z) =
(

1 + z + z2

2! + z3

3! + · · ·
)

−
(
1 + a1z + a2z

2 + · · · + anzn
)

.

Simplifying the expression, we get:

f(z) = (z − a1z) +
(

z2

2! − a2z
2
)

+ · · · +
(

zn

n! − anzn
)

+
∞∑

k=n+1

zk

k! .
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The order of the zero at z0 = 0 is determined by the first non-zero coefficient in the
above expansion. That is, we seek the smallest k such that

1
k! − ak ̸= 0.

Thus, the order of the zero at z0 = 0 is:

min
{

k : 1 ≤ k ≤ n and ak ̸= 1
k!

}
.

If ak = 1
k! for all k ≤ n, then the order of the zero is n + 1.

5.3. ⋆ The complex logarithm Let

U = C \ {z ∈ C : ℑ(z) = 0, ℜ(z) ≤ 0}

be the open set obtained by removing the negative real axis from the complex plane
C. The complex logarithm is defined in U as

log(z) := log(|z|) + i arg(z), z = |z|ei arg(z),

where arg(z) ∈] − π, π[. Show that for every z ∈ U

log(z) =
∫

γ

1
w

dw,

where γ is the segment connecting 1 to z.

Hint: integrate over a well chosen closed curve containing γ and passing through |z|.

Solution: Fix z ∈ U and let θ = arg(z) ∈] − π, π[ so that z = |z|eiθ. Then, consider
the closed curve σ defined as the concatenation of: γ1(t) = (1 − t) + t|z|, t ∈ [0, 1]
(the segment joining 1 with |z|), then γ2(t) = |z|eit for t ∈ [0, θ] (the arc centred at
the origin connecting |z| to z ), and finally γ−, (the segment joining z to 1). Since
w 7→ 1/w is holomorphic in U , by Cauchy Theorem we have by integrating over σ
that ∫

γ

1
w

dw =
∫

γ1

1
w

dw +
∫

γ2

1
w

dw =
∫ 1

0

|z| − 1
(1 + t) + t|z|

dt +
∫ θ

0

i|z|eit

|z|eit
dt

= log((1 + t) + t|z|)|t=1
t=0 + iθ = log(|z|) + i arg(z)

which is exactly the definition of the complex logarithm.

5.4. A complex ODE Take advantage of the power series expansion around zero to
find a holomorphic function f : C → C such that f ′(z) = zf(z) and f(0) = 1.
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Solution: We know that f(z) can be expressed as a power series around z = 0:

f(z) =
∞∑

n=0
anzn.

Taking the derivative term-by-term, we obtain:

f ′(z) =
∞∑

n=1
nanzn−1.

Substituting f(z) and f ′(z) into the differential equation f ′(z) = zf(z), we get:
∞∑

n=1
nanzn−1 = z

∞∑
n=0

anzn.

The right-hand side is

z
∞∑

n=0
anzn =

∞∑
n=0

anzn+1 =
∞∑

m=1
am−1z

m (letting m = n + 1).

Thus, the equation becomes:
∞∑

n=1
nanzn−1 =

∞∑
m=1

am−1z
m.

To align the powers of z on both sides, perform a change of index on the left-hand
side. Let m = n − 1, which implies n = m + 1. Then:

∞∑
n=1

nanzn−1 =
∞∑

m=0
(m + 1)am+1z

m.

Now, the equation is:
∞∑

m=0
(m + 1)am+1z

m =
∞∑

m=1
am−1z

m.

Separating the m = 0 term on the left-hand side:

a1 +
∞∑

m=1
(m + 1)am+1z

m = 0 +
∞∑

m=1
am−1z

m.

By equating the coefficients of the two power series, we get a1 = 0 and obtain the
following recurrence relation for m ≥ 1:

(m + 1)am+1 = am−1 ⇒ am+1 = am−1

m + 1 .
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Using the initial condition f(0) = 1, we have:

a0 = 1.

From a1 = 0, we proceed to find the subsequent coefficients using the recurrence
relation.

Let’s compute a few coefficients to identify a pattern:

- For m = 1:

a2 = a0

2 = 1
2 .

- For m = 2:

a3 = a1

3 = 0.

- For m = 3:

a4 = a2

4 = 1
2 · 4 = 1

8 .

- For m = 4:

a5 = a3

5 = 0.

Continuing this process, we observe that all coefficients an for odd n ≥ 1 are zero.
For even n = 2k, the coefficients are given by:

a2k = 1
2kk! .

Substituting the coefficients back into the power series, we obtain:

f(z) =
∞∑

k=0
a2kz2k =

∞∑
k=0

z2k

2kk! .

Recognizing the power series expansion of the exponential function, we can rewrite
this as:

f(z) =
∞∑

k=0

(
z2

2

)k

k! = e
z2
2 .

5.5. Riemann continuation Theorem Let f : C \ {0} → C be holomorphic. Show
that the following are equivalent:
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1. There exists g : C → C holomorphic, such that g(z) = f(z) for all z ̸= 0.

2. There exists g : C → C continuous, such that g(z) = f(z) for all z ̸= 0.

3. There exists ε > 0 such that f is bounded in Ḃε = {z ∈ C : |z| < ε} \ {0}.

4. limz→0 zf(z) = 0.

Hint: to prove 4. ⇒ 1. define h(z) = zf(z) when z ̸= 0 and h(0) = 0. Analyse the
relation between f(z), h(z) and k(z) := zh(z).

Solution: Notice that the implications 1. ⇒ 2. ⇒ 3. ⇒ 4. are elementary. We are
left to show 4. ⇒ 1. Introduce the function

h(z) :=

zf(z), z ̸= 0,

0, z = 0,

and set k(z) = zh(z). By assumption 4. h and k are holomorphic in C \ {0}
and continuous in the whole complex plane C. Since k(z) = k(0) + zh(z) we
deduce that k is complex differentiable in zero and hence holomorphic in C. By
Taylor representation of holomorphic functions, k(z) = a0 + a1z + a2z

2 + . . . for
coefficients a0, a1, · · · ∈ C. Since k(0) = 0 and k′(0) = h(0) = 0 we deduce that
k(z) = a2z

2 + a3z
3 + a4z

4 + · · · = z2(a2 + a3z + a4z
2 + . . . ). Now, recalling that

k(z) = z2f(z) for z ̸= 0 we deduce that g(z) := a2 + a3z + a4z
2 + . . . is indeed an

holomorphic extension of f in C.

5.6. ⋆ Let D ⊂ C be the unit disk at the origin. Find all functions f(z) which are
holomorphic on D and which satisfy

f
( 1

n

)
= n2f

( 1
n

)3
, n = 2, 3, 4, . . .

Solution: We rewrite this as

f
( 1

n

)(
f
( 1

n

)
− 1

n

)(
f
( 1

n

)
+ 1

n

)
= 0.

At each n, one of the following holds:

f
( 1

n

)
= 0, f

( 1
n

)
= 1

n
, or f

( 1
n

)
= − 1

n
.

At least one of these three equations must hold for infinitely many n. Therefore,
either

f(z) = 0, f(z) = z, or f(z) = −z.
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