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6.1. MC Questions

(a) Consider the sequence of functions fn(z) = zn

n+1 on D = {z ∈ C : |z| ≤ 1}. Which
of the following is true?

A) The sequence {fn(z)} converges uniformly on D.

B) The sequence {fn(z)} converges locally uniformly on D, but not uniformly.

C) The sequence {fn(z)} converges pointwise but not uniformly on D.

D) The sequence {fn(z)} does not converge on D.

Solution: We directly check for uniform convergence. To test this, we consider the
absolute value of fn(z):

|fn(z)| =
∣∣∣∣ zn

n + 1

∣∣∣∣ = |z|n

n + 1 .

For z ∈ D, observe that |fn(z)| ≤ 1
n+1 because |zn| ≤ 1 for all z ∈ D. Since 1

n+1 → 0
uniformly (indeed, independently from z ∈ D) as n → ∞, we can conclude that A) is
the correct answer.

(b) Let (fn)n∈N be a sequence of functions fn : C → C. Which of the following
statements is true?

A) If ∑n∈N fn converges uniformly on C to some f and for each n ∈ N there exists
some Mn ∈ R+ such that supz∈C |fn(z)| ≥ Mn, then ∑n∈N Mn converges.

B) If ∑n∈N fn converges locally uniformly on C to some f and for each n ∈ N there
exists some Mn ∈ R+ such that supz∈C |fn(z)| ≥ Mn, then supn∈N Mn is finite,
i.e. the sequence (Mn)n∈N is bounded.

C) If for all n ∈ N we have that supz∈C |fn(z)| = +∞, then ∑n∈N fn can not converge
uniformly to any f : C → C.

D) If for all n ∈ N we have that supz∈C |fn(z)| = +∞, then ∑
n∈N fn converges

uniformly to some f : C → C.

Solution: A) is false. Consider the counterexample where {fn(z)}n given by the
sequence of constant functions {1, −1, 1

2 , −1
2 , 1

3 , −1
3 , . . . , 1

n
, −1

n
, . . .}. The series ∑ fn(z)

converges uniformly since

N∑
n

fn(z) =

0 N even,
2

N+1 N odd.
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but for each n,

sup
z∈C

|fn(z)| ≥ 1
n + 1 so Mn = 1

n + 1 .

However, ∑∞
n=1 Mn = ∑∞

n=1
1

n+1 diverges.

B) is also false. Consider the sequence fn(z) = zn

n! . The sequence converges locally
uniformly to ez on C, but

sup
z∈C

|fn(z)| = ∞,

so we can take Mn = n, and the sequence (Mn) is unbounded. Therefore, the
statement is false.

C) is true. Assume, towards a contradiction, that ∑n∈N fn(z) converges uniformly to
some function f : C → C. By the definition of uniform convergence, this means that
for any ϵ > 0, there exists some N ∈ N such that for all n ≥ N and for all z ∈ C, we
have ∣∣∣∣∣

∞∑
k=n

fk(z)
∣∣∣∣∣ < ϵ.

In particular, this implies that |fn(z)| = |∑∞
k=n fk(z) − ∑∞

k=n+1 fk(z)| < 2ϵ for all
n ≥ N and for all z ∈ C. However, by assumption, for each n ∈ N, we have that

sup
z∈C

|fn(z)| = +∞.

In particular, for any n ≥ N , this contradicts the earlier conclusion that |fn(z)| < 2ϵ
for all z ∈ C.

The fact that D) is false follows from the fact that C) is true.

6.2. Show that the following functions exist and are holomorphic on the indicated
open sets; furthermore, give a similar expression for their derivatives:

(a) f1(z) = ∑∞
n=1

zn

1−zn on D1(0)

Solution: One can give a simple proof using Weierstrass M-test. More precisely, let
0 < R < 1. For any z with |z| ≤ R we have that | zn

1−zn | ≤ Rn

1−R
. Since 1

1−R

∑∞
n=1 Rn

converges, f1(z) = ∑∞
n=1

zn

1−zn converges on every compact subset of D1(0) using the
Weierstrass M-test. Hence f1(z) is holomorphic.
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Or one can use the definition of uniform convergence directly. Namely first observe
that for each n ≥ 1, the term

f1,n(z) = zn

1 − zn

is holomorphic on the open unit disk D1(0). This is because zn is a holomorphic
function, and the denominator 1 − zn does not vanish for z ∈ D1(0), since |z| < 1
implies |zn| < 1. Hence, each term of the series is holomorphic in the open set D1(0).
Since any finite partial sum of holomorphic functions is holomorphic, the partial sums

SN(z) =
N∑

n=1

zn

1 − zn

are holomorphic for all N in D1(0). To prove that the series converges uniformly on
compact subsets of D1(0), consider the tail of the series:

TN(z) =
∞∑

n=N+1

zn

1 − zn
.

We want to show that TN(z) → 0 uniformly as N → ∞. Let K be a compact subset
of D1(0). Since K is compact, there exists r < 1 such that |z| ≤ r for all z ∈ K. For
|z| ≤ r, we have

∣∣∣∣ zn

1 − zn

∣∣∣∣ ≤ |z|n

1 − |z|n
≤ rn

1 − rn
.

Therefore, the tail sum satisfies

|TN(z)| ≤
∞∑

n=N+1

rn

1 − rn
= rN+1

(1 − r)(1 − rn) .

Since this bound tends to zero as N → ∞, the tail TN(z) goes to zero uniformly on
K. Hence, the series converges uniformly on compact subsets of D1(0). Since the
series converges uniformly on compact subsets of D1(0) and each term is holomorphic,
we can differentiate the series term by term. That is, the derivative of the sum is the
sum of the derivatives:

f
(k)
1 (z) =

∞∑
n=1

dk

dzk

(
zn

1 − zn

)
.

(b) f2(z) =
∫ 1

0 (1 − tz)4etz dt on C
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Solution: Note that the function F (z, t) = (1 − tz)4etz is continuous on C × [0, 1]
and holomorphic in z for each fixed t ∈ [0, 1]. Now the result is a simple application
of Theorem 5.4 from the notes.

Once can also prove this without using the Theorem 5.4 as follows. The function
f2(z) is defined as an integral over the bounded domain [0, 1] of the integrand

g(z, t) = (1 − tz)4etz.

Since g(z, t) is continuous with respect to z for each fixed t, and the integrand is
uniformly bounded on [0, 1] for any compact subset of C (as t ranges only from 0 to
1), the function f2(z) is continuous. Specifically, for each t ∈ [0, 1],

|(1 − tz)4etz| ≤ C for z ∈ K,

where K is any compact set and C is a constant depending on K. Thus, f2(z) is
continuous on C. Next, we need to show that f2(z) is holomorphic. The integrand
g(z, t) = (1 − tz)4etz is holomorphic in z for each fixed t ∈ [0, 1]. Now, we need to
show that f2(z) is holomorphic by integrating over a triangular region. Let T be a
triangular region in C. We wish to show that∫

T
f2(z) dz = 0.

Using Fubini’s theorem, we can interchange the order of integration:∫
T

f2(z) dz =
∫ 1

0

(∫
T
(1 − tz)4etz dz

)
dt.

Since the integrand (1 − tz)4etz is holomorphic in z, by Cauchy’s theorem, the integral
over the triangular region T is zero:∫

T
(1 − tz)4etz dz = 0 for all t ∈ [0, 1].

Thus, by Fubini’s theorem, we conclude that∫
T

f2(z) dz = 0,

which shows that f2(z) is holomorphic on C. To compute the n-th derivative of f2(z),
we apply Cauchy’s differentiation formula. The n-th derivative of f2(z) is given by

f
(n)
2 (z) = n!

2πi

∫
γ

f2(ζ)
(ζ − z)n+1 dζ,

where γ is a small contour around z.
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Using Fubini’s theorem again, we can exchange the order of integration:

f
(n)
2 (z) =

∫ 1

0

(
n!
2πi

∫
γ

(1 − tζ)4etζ

(ζ − z)n+1 dζ

)
dt.

By Cauchy’s differentiation formula, the inner contour integral gives the n-th derivative
of the integrand with respect to ζ:

f
(n)
2 (z) =

∫ 1

0

dn

dzn

(
(1 − tz)4etz

)
dt.

(c) f3(z) = ∑∞
n=0 n2 exp(2iπn3z) on H = {z ∈ C | ℑ(z) > 0}

Solution: Let δ > 0 and Hδ := {z ∈ C | ℑ(z) ≥ δ}. Then for any z ∈ Hδ,
|n2 exp(2iπn3z)| ≤ n2 exp(−2πn3δ).

Since ∑∞
n=0 n2 exp(−2πn3δ) < ∞, once again by Weierstrass M-test, f3(z) converges

uniformly on the compact set Hδ. Since any compact subset of H is contained in Hδ

for some δ > 0, the result follows.

Alternatively let us write each term in the series as

f3,n(z) = n2 exp(2iπn3z),

where n ≥ 0. For each fixed n, the function f3,n(z) is holomorphic on all of C, in
particular each term is holomorphic on the given domain {z ∈ C | ℑ(z) > 0}.

Since any finite sum of holomorphic functions is holomorphic, we conclude that the
partial sums

SN(z) =
N∑

n=0
n2 exp(2iπn3z)

are holomorphic on {z ∈ C | ℑ(z) > 0}. Next, we need to show that the series
converges uniformly on compact subsets of {z ∈ C | ℑ(z) > 0}. Let K be a compact
subset of {z ∈ C | ℑ(z) > 0}. Since ℑ(z) > 0 for all z ∈ K, there exists a constant
δ > 0 such that ℑ(z) ≥ δ > 0 for all z ∈ K. For z ∈ K, the exponential term in the
series satisfies

| exp(2iπn3z)| = exp(−2πn3ℑ(z)) ≤ exp(−2πn3δ).

Therefore, for large n, the terms decay exponentially. This gives the following bound
on the tail of the series:∣∣∣∣∣∣

∞∑
n=N+1

n2 exp(2iπn3z)

∣∣∣∣∣∣ ≤
∞∑

n=N+1
n2 exp(−2πn3δ).
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Since this is a rapidly decreasing series for large n, the tail tends to zero uniformly as
N → ∞. Hence, the series converges uniformly on compact subsets of {z ∈ C | ℑ(z) >
0}. Since the series converges uniformly on compact subsets, we can differentiate
term by term. The derivative of the sum is the sum of the derivatives of each term.
The k-th derivative of the n-th term is:

f
(k)
3,n(z) = dk

dzk

(
n2 exp(2iπn3z)

)
.

Using the chain rule, the k-th derivative of the exponential function is:

f
(k)
3,n(z) = (2iπn3)kn2 exp(2iπn3z) = (2iπ)kn3k+2 exp(2iπn3z).

Thus, the k-th derivative of f3(z) is:

f
(k)
3 (z) =

∞∑
n=0

(2iπ)kn3k+2 exp(2iπn3z).

6.3.

(a) Prove that the sequence fn(z) = zn, n ≥ 1 converges locally uniformly but not
uniformly on {z : |z| < 1}.

Solution. Since zn → 0 as n → ∞ for every |z| < 1, fn → 0 pointwise. Convergence
is not uniform since sup|z|<1 |fn(z) − 0| = 1. Locally uniform convergence is equivalent
to uniform convergence on compact subsets. Let K be a compact subset of the open
unit disk. Define r = maxz∈K |z|. Then since r < 1,

max
z∈K

|fn(z) − 0| = max
z∈K

|zn| = rn → 0 as n → ∞.

Therefore, fn → 0 uniformly on K and hence converges locally uniformly.

(b) Let f : C → C be an arbitrary (not necessarily continuous) function and define
for n ∈ N

fn(z) =

f(z), if |z| ≤ n,

0, if |z| > n.

Show that the sequence (fn) converges pointwise and locally uniformly to f , and that
it converges uniformly to f if and only if lim|z|→∞ f(z) = 0.

Solution. Let K ⊂ C be a compact subset and define r = maxz∈K |z|. Then for all
z ∈ K, the sequence fn(z) becomes stationary and equal to f(z) for n ≥ r. Thus,
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(fn) converges uniformly on compact subsets of C and hence locally uniformly on C.
Moreover, (fn) converges uniformly on C if and only if

lim
n→∞

sup
z∈C

|fn(z) − f(z)| = lim
n→∞

sup
|z|>n

|f(z)| = 0,

which is equivalent to lim|z|→∞ f(z) = 0.

6.4. Let f be a holomorphic function on D = {z : |z| < 1} with f(0) = 0. Prove
that the series ϕ(z) = ∑∞

n=1 f(zn) converges locally uniformly on D.

Solution. Let 0 < R < 1. We first prove that ϕ converges uniformly on {|z| ≤ R}.
For |z| ≤ R, we take the path γ as the straight line segment joining 0 and z. Then

|f(z)| =
∣∣∣∣∫

γ
f ′(w) dw + f(0)

∣∣∣∣ ≤ M |z|,

where M = max|w|≤R |f ′(w)|.

|ϕ(z)| ≤
∞∑

n=1
|f(zn)| ≤ M

∞∑
n=1

|zn| ≤ M
∞∑

n=1
Rn,

which converges uniformly on {|z| ≤ R} by the Weierstrass criterion. Let K ⊂ D be
a compact subset. Then there exists R < 1 such that K ⊂ {|z| ≤ R}. Therefore, ϕ
converges uniformly on each compact subset K, and hence converges locally uniformly
on D.

6.5. Weierstrass M-test Let fn : A → C be a sequence of functions and Mn be a
sequence of real numbers such that

|fn(z)| ≤ Mn, ∀n ≥ 1, ∀z ∈ A and
∞∑

n=1
Mn converges.

Prove that ∑∞
n=1 fn(z) converges absolutely and uniformly on A.

Solution: For each fixed z ∈ A, we have the inequality

|fn(z)| ≤ Mn.

Since the series ∑∞
n=1 Mn converges, by the comparison test, it follows that the series

∞∑
n=1

|fn(z)|
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also converges. Therefore, the series ∑∞
n=1 fn(z) converges absolutely for each z ∈ A.

Next, we show that the series ∑∞
n=1 fn(z) converges uniformly on A. To do this,

we use the Cauchy criterion for uniform convergence. Let ϵ > 0. Since ∑∞
n=1 Mn

converges, there exists an integer N ≥ 1 such that for all p, q ≥ N ,
q∑

n=p

Mn < ϵ.

Now, for all z ∈ A and for all p, q ≥ N , we have∣∣∣∣∣
q∑

n=p

fn(z)
∣∣∣∣∣ ≤

q∑
n=p

|fn(z)| ≤
q∑

n=p

Mn.

Thus, for all z ∈ A, we get∣∣∣∣∣
q∑

n=p

fn(z)
∣∣∣∣∣ < ϵ.

This shows that the sequence of partial sums of ∑∞
n=1 fn(z) satisfies the Cauchy

criterion uniformly on A. Therefore, the series ∑∞
n=1 fn(z) converges uniformly on A.
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