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7.1. MC Questions

(a) Consider the function f : z 7→ ez

ez−1 , defined for all z ∈ C such that ez ̸= 1. Which
of the following statements holds?

A) The function f is holomorphic on C \ {0}.

B) The function f has poles and each pole is simple.

C) The function f has both poles and removable singularities.

D) The function f has finitely many singularities.

Solution: To determine the points at which f is not holomorphic, observe that f is
undefined when ez − 1 = 0. This equation is satisfied when z = 2πin for some integer
n ∈ Z. Around these points, we can determine the nature of the singularity using the
limit:

lim
z→2πin

z − 2πin

ez − 1 .

By applying L’Hopital’s rule to evaluate this limit, we find that each singularity at
z = 2πin is indeed a simple pole. Thus, f has only simple poles.

(b) Which of the following equalities is false?

A) res2i

(
1

z2+4

)
= 1

4i

B) res0

(
sin(z)

z2

)
= 1

C) res0

(
cos(z)

z2

)
= 0

D) res1

(
1

z5−1

)
= 1

5!

Solution: Since (1/(z2 + 4))−1 = (z2 + 4) = (z − 2i)(z + 2i) has a zero of order 1
in 2i, we get that 1/(z2 + 4) has a pole of order 1 at the same point. The residue is
given by

res2i
1

z2 + 4 = lim
z→2i

(z − 2i) 1
z2 + 4 = 1

4i
.

For the second function, taking advantage of the Taylor expansion of sin(z) at 0 we
have that

sin(z)
z2 = z−2

+∞∑
k=0

(−1)kz2k+1

(2k + 1)! = z−1 +
+∞∑
k=1

(−1)kz2k−1

(2k + 1)! ,
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showing at the same time that the pole at zero is of order 1 and the residue is

res0
sin(z)

z2 = 1.

We argue similarly for the third function:

cos(z)
z2 = z−2

+∞∑
k=0

(−1)kz2k

(2k)! = z−2 +
+∞∑
k=1

(−1)kz2k−2

(2k)! ,

and hence the pole is of order 2, and

res0
cos(z)

z2 = 0.

Finally, (1/(z5 − 1))−1 = z5 − 1 has a zero of order 1 in 1, and therefore the pole of
1/(z5 − 1) is also of order 1 by definition. The residue is

res1
1

z5 − 1 = lim
z→1

(z − 1)
z5 − 1 = lim

z→1

1
5z4 = 1

5 ,

where we took advantage of Bernoulli-l’Hôpital’s rule to compute the limit.

7.2. Schwarz reflection principle Let Ω be open, connected, and symmetric
with respect to the x-axis (i.e. z 7→ z̄ preserves Ω), and let f : Ω → C be holomorphic.
Let L := {z ∈ Ω : ℑ(z) = 0}. Note that L is non-empty. Prove that f(z̄) = f(z) for
all z ∈ Ω if and only if f is real valued on L.

Hint: consider g to be the restriction of f to the upper half plane intersected with Ω.
’Reflect’ g by imposing g∗(z) := g(z̄). Argue taking advantage of Morera’s Theorem.

Solution: One direction is elementary: since z ∈ L implies z̄ = z, the relation
f(z) = f(z̄) gives on L that f(z) = f(z), and hence 2ℑ(f(z)) = 0, showing that f
has real image on L. To prove the other direction suppose f real valued on L. Define
the function

h(z) :=

f(z), if z ∈ Ω, ℑ(z) ≥ 0
f(z̄), if z ∈ Ω, ℑ(z) < 0.

We claim that h is continuous. In fact, by construction of f we only have to check
continuity approaching L, that is

lim
ℑ(z)→0+

z∈Ω

h(z) = lim
ℑ(z)→0−

z∈Ω

h(z) ⇔ lim
ℑ(z)→0+

z∈Ω

f(z) = lim
ℑ(z)→0−

z∈Ω

f(z̄).

This holds because by assumption f(z̄) = f(z) for z ∈ L and the conjugation w 7→ w̄
is continuous. We prove now that h is holomorphic: by Morera’s Theorem we have to
check that

∫
T h dz = 0 for every triangle T ⊂ Ω. We split this into three cases:
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– Type 1: T ⊂ (Ω ∩ {z : ℑ(z) ≥ 0}). In this case h = f on T and it suffices to
apply Goursat’s Theorem for holomorphic functions.

– Type 2: T ⊂ (Ω ∩ {z : ℑ(z) < 0}). In this case we can compute∫
T

h(z) dz =
∫

T
f(z̄) dz =

∫
T

f(z̄) dz =
∫

T̄
f(z) dz = 0̄ = 0,

since T̄ is a triangle in the upper halfplane, and therefore we can apply the
result for Type 1.

– Generic type: T is a generic triangle in Ω. In this case one can check that there
exist (at most) 3 oriented triangles T1, T2, and T3, all of them of type 1 or 2
such that∫

T
h dz =

∫
T1

h dz +
∫

T2
h dz +

∫
T3

h dz.

Hence, by applying the previous cases, we deduce finally
∫

T h dz = 0.

Ω

T

T1

T2

T3

To conclude, observe that we constructed h holomorphic in Ω that agrees with f
when ℑ(z) ≥ 0. By the uniqueness of analytic extensions, we deduce that f = h, and
hence f(z̄) = h(z̄) = h(z) = f(z) as wished.

7.3. Dense image Show that the image of a non-constant holomorphic function
f : C → C is dense in C, that is: for every z ∈ C and ε > 0, there exists w ∈ C such
that |z − f(w)| < ε.

Remark: In fact there is a theorem, called the little Picard Theorem, which asserts
that f(C) misses at most one single point of C!

Solution: By contradiction suppose that there exists z∗ ∈ C and ε∗ > 0 such that
f(w) ̸∈ {z ∈ C : |z − z∗| < ε∗} for all w ∈ C. Define the function

g(w) := 1
f(w) − z∗ .
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By assumption |f(w) − z∗| ≥ ε∗ and hence g is a well defined holomorphic function
since the denominator is never zero. On the other side

|g(w)| = 1
|f(w) − z∗|

≤ 1
ε∗ , ∀w ∈ C,

contradicting Liouville’s Theorem (every holomorphic function on C is either constant
or unbounded). Hence, for all ε > 0 and z ∈ C there exists w ∈ C such that
|f(w) − z| < ε, proving the density of the image of f in C.

7.4. Let D = {z | |z| < 1} be the unit disk, and let D be its closure. Give an
example of a continuous function f : D → C that is holomorphic on D, but does not
have a holomorphic continuation on any domain in C containing D.

Solution. We can define such a function f as a power series with radius of convergence
1 that converges everywhere on the boundary of D. For example, consider the function

f(z) =
∞∑

n=1

zn

n2 .

This series converges for |z| ≤ 1, making f continuous on D and holomorphic on D.
Suppose there is a function F which is holomorphic on an open domain Ω ⊃ D. By
compactness of D and the fact that C \ Ω is closed, it follows that Ω includes some
bigger disc Dr = {z ∈ C | |z| < r}, r > 1 containing D and agreeing with f in D.
Then for any z ∈ Dr, F has a power series expansion

F (z) =
∞∑

n=0
anzn.

This power series expansion is clearly also valid for z ∈ D. By the uniqueness of the
coefficients in the power series expansions of holomoprhic functions, we have that
a0 = 0 and an = 1/n2 for n ≥ 1.

But this will mean f has a radius of convergence bigger than 1 which contradicts the
fact that the power series defining f has a radius of convergence exactly equal to 1

7.5. Complex integrals Compute the following complex integrals taking advantage
of the Residue Theorem.

(a) ∫
|z|=2

ez

z2(z − 1) dz.
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Solution: The poles of f(z) = ez/(z2(z − 1)) are at 0 and 1, with multiplicity 2 and
1 respectively. We compute

res0(f) = lim
z→0

(z2f(z))′ = lim
z→0

(
ez

(z − 1)

)′
= −2,

and

res1(f) = lim
z→1

(z − 1)f(z) = e.

By the Residue Theorem, since 0 and 1 are in the interior of the disc of radius 2
centered at the origin, we can compute∫

|z|=2

ez

z2(z − 1) dz = 2πi(e − 2).

(b) ∫
|z|=1

1
z2(z2 − 4)ez

dz.

Solution: The poles of f(z) = 1/(z2(z2 − 4)) are at 0,
√

2 and −
√

2 with multiplicity
2, 1, 1 respectively. However, since only 0 belongs to the interior of the circumference
of radius 1 centered at the origin, we get that∫

|z|=1

1
z2(z2 − 4)ez

dz = 2πi res0(f) = 2πi lim
z→0

(z2f(z))′ = 2πi lim
z→0

( 1
(z2 − 4)ez

)′
= πi

2 .

(c) ∫
|z|=1/2

1
z sin(1/z) dz.

Hint: Note that the function 1
z sin(1/z) has infinitely many singularities accumulating

at 0. Hence you cannot use the residue theorem directly. To go around this problem
first prove∫

|z|=1/2

1
z sin(1/z) dz =

∫
|w|=2

1
w sin(w) dw.

Solution: By parametrizing the contour as t 7→ eit/2 we get that∫
|z|=1/2

1
z sin(1/z) dz =

∫ 2π

0

ieit/2
eit/2 sin(2e−it) dt =

∫
|w|=2

1
w sin(w) dw

where we recognised t 7→ 2e−it as the circle of radius 2 oriented in the clockwise
direction (hence the change of sign). The only pole contained in |w| ≤ 2 is z = 0, and
it is of order 2. We get∫

|w|=2

1
w sin(w) dw = 2πi res0

( 1
w sin(w)

)
= 2πi lim

w→0

(
w2

w sin(w)

)′
= 0.
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(d) ∫
|z|=5

1
(z − i)(z + 2)(z − 4) dz.

Solution: The poles of f(z) = 1
(z−i)(z+2)(z−4) are all of order 1, and equal to i, −2,

and 4. The associated residues are

resi f = 1
(2 + i)(i − 4) ,

res−2 f = 1
6(2 + i) ,

res4 f = 1
6(4 − i) .

Since they are all in the interior of {|z| = 5}, we have that∫
|z|=5

1
(z − i)(z + 2)(z − 4) dz = 2πi

( 1
(2 + i)(i − 4) + 1

6(2 + i) + 1
6(4 − i)

)
,

7.6. The Gamma function Let Z− := {0, −1, −2, . . . } the set of all non-positive
integers, and define for all τ ∈ R the set Uτ := {z ∈ C : ℜ(z) > τ, z ̸∈ Z−}, and
U := C \ Z−.

(a) Show that the function defined by the complex improper Riemann integral

Γ(z) =
∫ +∞

0
e−ttz−1 dt

is well defined for all z ∈ U1. (Here tz−1 = exp((z − 1) log(t))).

Solution: First of all, fix z ∈ U1. Then, ℜ(z−1) > 0 by definition of U1, and therefore
there exists a > 0 large enough (depending on ℜ(z)) such that ℜ(z − 1) log(t) < t/2
for all t > a (this follows from the elementary observation lims→+∞ log(s)/s = 0).
Now for every n > a one has that∣∣∣∣∫ n

a
e−ttz−1 dt

∣∣∣∣ =
∣∣∣∣∫ n

a
e−te(ℜ(z−1)+iℑ(z−1)) log(t) dt

∣∣∣∣
=

∣∣∣∣∫ n

a
e−teiℑ(z−1) log(t)eℜ(z−1) log(t) dt

∣∣∣∣
≤

∫ n

a
e−t|eiℑ(z−1) log(t)||eℜ(z−1) log(t)| dt =

∫ n

a
e−teℜ(z−1) log(t) dt

≤
∫ n

a
e−tet/2 dt = [−2e−t/2]t=n

t=a = −2e−a/2 + 2e−n/2.
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On the other side, notice that on the interval [0, a] the function t 7→ e−t+ℜ(z−1) ln(t) is
continuous, and therefore the integral

∫ a
0 |e−ttz−1| dt =: α is well defined. Hence, we

conclude that the improper integral defining Γ converges absolutely:

lim
n→+∞

∫ n

0
|e−ttz−1| dt =

∫ a

0
|e−ttz−1| dt + lim

n→+∞

∫ n

a
|e−ttz−1| dt ≤ α − 2e−a/2 < +∞

proving that Γ(z) is well defined for all z ∈ U1.

(b) Prove that Γ is holomorphic in U1.

Hint: First show that the functions of the sequence (Γn)n∈N given by truncating the
integral at height n (Γn(z) =

∫ n
0 e−ttz−1 dt) are holomorphic. Then, show that Γn → Γ

uniformly in all compact subsets of U1.

Solution: Define the sequence

(Γn(z))n∈N =
∫ n

0
e−ttz−1 dt.

We first prove that z 7→ Γn(z) is continuous: let ε > 0 and fix w ∈ U1 and n ∈ N.
Since z 7→ tz−1 is continuous in U1, there exists δ > 0 such that for every v ∈ C such
that |w − v| < δ one has that |tw−1 − tv−1| < ε/(1 − e−n) and v ∈ U1. In this case we
can perform the following estimate:

|Γn(w) − Γn(v)| ≤
∫ n

0
e−t|tw−1 − tv−1| dt < (1 − e−n)ε/(1 − e−n) = ε,

proving the continuity of Γn in w ∈ U1 arbitrary, and therefore in all U1. By Morera’s
Theorem, we prove Γn holomorphic in U1 by checking that

∫
T Γn(z) dz = 0 for all

triangle T ⊂ U1. Now, observe that for such a given triangle∫
T

Γn(z)dz =
∫

T

∫ n

0
e−ttz−1 dt dz =

∫ n

0

∫
T

e−ttz−1 dz dt =
∫ n

0
0 dz = 0,

since z 7→ tz−1 is holomorphic for all t > 0, and we can interchange the integration
because both T and [0, n] are compact, and (t, z) 7→ e−ttz−1 is continuous and hence
uniformly bounded in [0, n] × T . This shows that (Γn)n∈N define a sequence of
holomorphic functions on U1. By taking advantage of Theorem 5.2 of last lecture, to
show that Γ is holomorphic in U1 is suffices to prove that Γn → Γ uniformly on every
compact subset of U1. Let K ⊂ U1 be compact, and let b = max{ℜ(z−1) : z ∈ K} > 0.
Let N = N(b) > 0 big enough so that t/2 ≥ b log(t) for all t > N . Then, for all
z ∈ K and n ≥ N one has that

|Γ(z) − Γn(z)| ≤
∫ +∞

n
e−teℜ(z−1) log(t) dt ≤

∫ +∞

n
e−teb log(t) dt ≤ 2e−2n,

which converges to zero uniformly in K.
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(c) Show that Γ(z + 1) = zΓ(z) for all z ∈ U1.

Solution: This follows by integration by parts:

Γ(z + 1) =
∫ +∞

0
e−ttz dt = [−e−ttz]+∞

0 +
∫ +∞

0
e−tztz−1 dt = zΓ(z).

(d) Deduce that Γ allows a unique holomorphic extension to U0.

Solution: Define the function Γ̃ on U0 by setting

Γ̃(z) = Γ(z + 1)
z

, z ∈ U0.

Since z ∈ U0 implies z + 1 ∈ U1 and z ̸= 0, we deduce that Γ̃ is a well defined
holomorphic function. On the other side, by the previous point Γ̃ coincides with Γ on
U1, showing that it is the unique analytic continuation of Γ from U1 to U0.

(e) Deduce that Γ allows a unique holomorphic extension to U .

Solution: We construct the extension on U inductively on m ∈ N0 over U−m/2
preserving the property Γ(z + 1) = zΓ(z). The case m = 0 has been proved in the
previous point. Supposing now Γ extended in U−m/2, then

Γ(z) = Γ(z + 1)
z

, z ∈ U−(m+1)/2.

defines again an analytic extension, agreeing with the previous one on the set U−m/2.
The property Γ(z + 1) = zΓ(z) is ensured by the very definition, an the uniqueness
by the properties of analytic functions.
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