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7.1. MC Questions

(a) Consider the function f: z —
of the following statements holds?

£, defined for all z € C such that e* # 1. Which
A) The function f is holomorphic on C\ {0}.

B) The function f has poles and each pole is simple.

C) The function f has both poles and removable singularities.

D) The function f has finitely many singularities.

Solution: To determine the points at which f is not holomorphic, observe that f is
undefined when e* — 1 = 0. This equation is satisfied when z = 2min for some integer
n € Z. Around these points, we can determine the nature of the singularity using the
limit: .

. z — 2min

lim ———.

z—=2min e — 1

By applying L’Hopital’s rule to evaluate this limit, we find that each singularity at
z = 2min is indeed a simple pole. Thus, f has only simple poles.

(b) Which of the following equalities is false?
A) resgi<z21+4> = 4%‘
B) resg <SHZI§,‘Z)>
C) resg <C°j§z>> =0

D) resl<z51_1> = %

Solution: Since (1/(2* +4))™' = (22 +4) = (2 — 2¢)(z + 2¢) has a zero of order 1
in 2, we get that 1/(2% +4) has a pole of order 1 at the same point. The residue is
given by
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For the second function, taking advantage of the Taylor expansion of sin(z) at 0 we
have that
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showing at the same time that the pole at zero is of order 1 and the residue is

sin(z)

o =1.

resg

We argue similarly for the third function:

k 52k _1)k; 2k—2

cos(z QZ _2+Z o

and hence the pole is of order 2, and

cos(z)

5 =0

reso

Finally, (1/(2° —1))™' = 2° — 1 has a zero of order 1 in 1, and therefore the pole of
1/(2% — 1) is also of order 1 by definition. The residue is
(z—1) .. 1 1

1
res = lim =lim— = -
Vs 1 251 25— 1 21524 5’

where we took advantage of Bernoulli-I’Hopital’s rule to compute the limit.

7.2. Schwarz reflection principle Let (2 be open, connected, and symmetric
with respect to the z-axis (i.e. z — Z preserves ), and let f :  — C be holomorphic.
Let L :={z € Q:3(2) = 0}. Note that L is non-empty. Prove that f(z) = f(z) for
all z € Q) if and only if f is real valued on L.

Hint: consider g to be the restriction of f to the upper half plane intersected with €.
‘Reflect” g by imposing g*(2) := g(z). Argue taking advantage of Morera’s Theorem.

Solution: One direction is elementary: since z € L implies z = z, the relation
f(z) = f(2) gives on L that f(z) = f(2), and hence 23(f(z)) = 0, showing that f
has real image on L. To prove the other direction suppose f real valued on L. Define
the function

Jf), ifze,S(2) >0
h(z) = {f(z), DTN

We claim that h is continuous. In fact, by construction of f we only have to check
continuity approaching L, that is

lim A(z)= lim h(z) < hm = lim Z).

3(2)—07t ( ) S(z)—0~ ( ) 3(2)—07F f( ) S(z)—0~ f( )

z€Q z€Q z€Q z€Q
This holds because by assumption f(z) = f(z) for z € L and the conjugation w — w
is continuous. We prove now that h is holomorphic: by Morera’s Theorem we have to
check that [, hdz =0 for every triangle 7" C 2. We split this into three cases:

2/8
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— Type 1: T C (2n{z:3(z) > 0}). In this case h = f on T and it suffices to
apply Goursat’s Theorem for holomorphic functions.

— Type 2: T C (2N {z:(z) < 0}). In this case we can compute

[ [ G0 [ 7o~ [

since T is a triangle in the upper halfplane, and therefore we can apply the
result for Type 1.

— Generic type: T is a generic triangle in 2. In this case one can check that there
exist (at most) 3 oriented triangles T3, Ty, and T3, all of them of type 1 or 2
such that

/hdz—/ hdzt [ hdzt [ n-.
T Ts

Hence, by applying the previous cases, we deduce finally [,hdz = 0.

To conclude, observe that we constructed h holomorphic in €2 that agrees with f

when (z) > 0. By the uniqueness of analytic extensions, we deduce that f = h, and
hence f(z) = h(z) = h(z) = f(z) as wished.

7.3. Dense image Show that the image of a non-constant holomorphic function
f:C— Cis dense in C, that is: for every z € C and € > 0, there exists w € C such
that |z — f(w)| < e.

Remark: In fact there is a theorem, called the little Picard Theorem, which asserts
that f(C) misses at most one single point of C!

Solution: By contradiction suppose that there exists z* € C and €* > 0 such that
fw)€{ze€C:|z—2z*| <e*} for all w € C. Define the function
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By assumption |f(w) — z*| > £* and hence ¢ is a well defined holomorphic function
since the denominator is never zero. On the other side

1
lg(w)| = 7

1
— < —, YweC,
w) —z*¥| T e*
contradicting Liouville’s Theorem (every holomorphic function on C is either constant
or unbounded). Hence, for all ¢ > 0 and z € C there exists w € C such that
|f(w) — z| < e, proving the density of the image of f in C.

7.4. Let D = {z | [2] < 1} be the unit disk, and let D be its closure. Give an
example of a continuous function f : D — C that is holomorphic on D, but does not
have a holomorphic continuation on any domain in C containing D.

Solution. We can define such a function f as a power series with radius of convergence
1 that converges everywhere on the boundary of D. For example, consider the function

f) =372

—-
n=1 n

This series converges for |z| < 1, making f continuous on D and holomorphic on D.
Suppose there is a function F which is holomorphic on an open domain 2 > D. By
compactness of D and the fact that C\  is closed, it follows that Q includes some
bigger disc D, = {z € C| |z| < r}, r > 1 containing D and agreeing with f in D.
Then for any z € D,, F' has a power series expansion

F(z) = a,z"
n=0

This power series expansion is clearly also valid for z € D. By the uniqueness of the
coefficients in the power series expansions of holomoprhic functions, we have that
ap = 0 and a,, = 1/n? for n > 1.

But this will mean f has a radius of convergence bigger than 1 which contradicts the
fact that the power series defining f has a radius of convergence exactly equal to 1

7.5. Complex integrals Compute the following complex integrals taking advantage
of the Residue Theorem.

(a)

6Z
—— dz.
/|z_2 22(z—1) -
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Solution: The poles of f(z) = e*/(2%(z — 1)) are at 0 and 1, with multiplicity 2 and
1 respectively. We compute

reso(f) = lim(22f(2)) = lim< < )I = —2,

250 2—0 (z -1

~—

and

res;(f) = lim(z — 1) f(z) =e.

z—1

By the Residue Theorem, since 0 and 1 are in the interior of the disc of radius 2
centered at the origin, we can compute

€Z
—— dz = 2mi(e — 2).
/|z|2 22(z —1) 2= 2mie—2)

(b)

1
————d=z.
/z|:l 22(22 — 4)e? :

Solution: The poles of f(z) = 1/(2%(22 —4)) are at 0, v/2 and —+/2 with multiplicity
2, 1, 1 respectively. However, since only 0 belongs to the interior of the circumference
of radius 1 centered at the origin, we get that

1 ; - s 2 .. 1 / )
/|Z|:1 m dz = 2miresy(f) = 2mi £1_I)I(1)(Z f(2) =2mi hm((z24)ez> =5

z—0

(c) )
/|z—1/2 zsin(1/z) dz.

Hint: Note that the function has infinitely many singularities accumulating

zsm(l/
at 0. Hence you cannot use the resmfue theorem directly. To go around this problem
first prove

R SRy
——dz = w.
l2|=1/2 zsin(1/z) lw|=2 w sin(w)

Solution: By parametrizing the contour as ¢ — €' /2 we get that

1 2m it
[ = [ ie’/2 at= [ L g
l2|=1/2 zsin(1/z) 0 €/2sin(2e%) lw|=2 w sin(w)

—it

where we recognised t — 2e~" as the circle of radius 2 oriented in the clockwise
direction (hence the change of sign). The only pole contained in |w| < 2 is z = 0, and
it is of order 2. We get

1 : 1 . w?
/ ——— dw = 27iresy () = 271 lim <> = 0.
lw=2 w sin(w) w sin(w) w—0\ w sin(w)
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(d)

1
/z|=5 C-iG+2G-8"

Solution: The poles of f(z) = m

and 4. The associated residues are

are all of order 1, and equal to 7, —2,

1
R IE)
o
res2f = Sn
resy, [ = 6(41— b

Since they are all in the interior of {|z| = 5}, we have that

1 . 1 1 1
/Z|_5 oGt~ 2“((2+¢)(¢ 0 Te@En) 6(4—@'))’

7.6. The Gamma function Let Z_ := {0, —1,—2,...} the set of all non-positive
integers, and define for all 7 € R the set U, := {z € C: R(z) > 7,2 ¢ Z_}, and
U:=C\Z_.

(a) Show that the function defined by the complex improper Riemann integral

_ Feo —tpz—1
I'(z) = et dt
0

is well defined for all z € U;. (Here t*~! = exp((z — 1) log(t))).

Solution: First of all, fix z € Uy. Then, R(z—1) > 0 by definition of Uy, and therefore
there exists a > 0 large enough (depending on R(z)) such that R(z — 1)log(t) < t/2
for all ¢ > a (this follows from the elementary observation limg_, log(s)/s = 0).
Now for every n > a one has that

n
/ et dt‘ =
a

/ e 6( (z—1)+i3(2—1)) log(t) dt‘

/" ot iS(z—1) log(t) JR(:—1) log (1) dt‘

</ —t|ez\sz 1) log(t) || R(z—1) log(t) ‘dt /ne—teéR(z l)log()dt
a

< / tet/2 gt = [2e~Y2I=N = _9¢=4/2 | 972,
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On the other side, notice that on the interval [0, a] the function ¢ +» e~ RE=D®) jg
continuous, and therefore the integral [;'|e~t*"!| dt =: a is well defined. Hence, we
conclude that the improper integral defining I' converges absolutely:

n a n
lim / le”'* | dt = / le """ dt + lim / le™ 'Y dt < a—2e7Y? < 400
0 0 n—+o0o Jq

n—-+00
proving that I'(z) is well defined for all z € U;.
(b) Prove that I' is holomorphic in Uj.

Hint: First show that the functions of the sequence (I',)nen given by truncating the
integral at height n (U,(2) = [y e "*~1 dt) are holomorphic. Then, show that T',, — T’
uniformly in all compact subsets of Uy .

Solution: Define the sequence

(T(2))nen = / et dt,
0

We first prove that z — I',(z) is continuous: let € > 0 and fix w € U; and n € N.
Since z — t*~! is continuous in Uj, there exists 6 > 0 such that for every v € C such
that |w — v| < & one has that [t*~! —¢*7!| < ¢/(1 —e™) and v € U;. In this case we
can perform the following estimate:

T, (w) — To(v)] < /0” e g dE < (1— e )e/(1— e ™) =&,

proving the continuity of I',, in w € U; arbitrary, and therefore in all U;. By Morera’s
Theorem, we prove I',, holomorphic in U; by checking that [, I',(z)dz = 0 for all
triangle 7' C U;. Now, observe that for such a given triangle

/Fn(z)dz://ne_ttz_ldtdz:/n/ e_ttz_ldzdt:/n()dz:(),
T 7 Jo o Jr 0

since z — t*~1 is holomorphic for all ¢ > 0, and we can interchange the integration
because both T" and [0, n] are compact, and (¢, z) — e~‘t*~! is continuous and hence
uniformly bounded in [0,n] x T. This shows that (I',),en define a sequence of
holomorphic functions on U;. By taking advantage of Theorem 5.2 of last lecture, to
show that I' is holomorphic in U; is suffices to prove that I';, — I' uniformly on every
compact subset of U;. Let K C U be compact, and let b = max{R(z—1): z € K} > 0.
Let N = N(b) > 0 big enough so that t/2 > blog(t) for all ¢ > N. Then, for all
z € K and n > N one has that

+oo +oo
‘F(Z) . Fn<2)’ < / efte%(zfl)log(t) dt < / efteblog(t) dt < 2672n’

n

which converges to zero uniformly in K.
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(c) Show that T'(z + 1) = 2T'(z) for all z € U;.
Solution: This follows by integration by parts:

400 +o0
['(z+1) = /0 e " dt = [—e )0 + /0 el dt = 21(2).

(d) Deduce that I' allows a unique holomorphic extension to Uj.

Solution: Define the function I on Uy by setting

. r 1
NP Gt Sy
z
Since z € Uy implies z +1 € U; and z # 0, we deduce that [ is a well defined
holomorphic function. On the other side, by the previous point I' coincides with I" on
Uy, showing that it is the unique analytic continuation of I' from U; to Uj.

(e) Deduce that I' allows a unique holomorphic extension to U.

Solution: We construct the extension on U inductively on m € Ny over U_,, /s
preserving the property I'(z + 1) = 2I'(z). The case m = 0 has been proved in the
previous point. Supposing now I' extended in U_,, /2, then

I'z+1
F(Z) = (Z)7 z € Uf(m+1)/2~
defines again an analytic extension, agreeing with the previous one on the set U_,, 5.
The property I'(z + 1) = 2I'(z) is ensured by the very definition, an the uniqueness

by the properties of analytic functions.



