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8.1. MC Questions

(a) Consider the real integral I =
∫∞

−∞
1

1+x2 dx. This can be computed using Cauchy’s
Residue Theorem. Which of the following is false?

A) Let γ(R) be a closed semicircle of radius R > 1 (centered at the origin) in
the lower half of the complex plane, which is traced counterclockwise. Then
I = limR→∞

∮
γ(R)

1
1+z2 dz.

B) Let γ(R) be a closed semicircle of radius R > 1(centered at the origin) in the
lower half of the complex plane, traced clockwise. Then I = limR→∞

∮
γ(R)

1
1+z2 dz.

C) I = 2πi Res
(

1
1+z2 , z = i

)
D) I = −2πi Res

(
1

1+z2 , z = −i
)

Solution: A) is false as it results in
∫−∞

∞
1

1+x2 dx = −I, given the orientation of the
semicircle. B) is correct C) and D) are also true, as

Resz=−i

( 1
1 + z2

)
= lim

z→−i
(z + i) 1

1 + z2

= lim
z→−i

(z + i) 1
(z + i)(z − i)

= lim
z→−i

1
z − i

= 1
−i − i

= 1
−2i

= − 1
2i

,

and similarly

Resz=i

( 1
1 + z2

)
= lim

z→i
(z − i) 1

1 + z2

= lim
z→i

(z − i) 1
(z + i)(z − i)

= lim
z→i

1
z + i

= 1
i + i

= 1
2i

.

(b) Let f(z) = ez

(z−1)3 . What is the order of the pole of f(z) at z = 1?
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A) 0 (no pole)

B) 1

C) 2

D) 3

Solution: The order of the pole is the highest power of (z − 1) in the denominator
that cannot be canceled by any term in the numerator. In this case the factor ez is
analytic (holomorphic) at z = 1, so it does not affect the order of the pole. Hence,
the term (z − 1)3 in the denominator determines the order of the pole. Since there is
no cancellation, the pole at z = 1 is of order 3.

8.2. Poles at infinity Let f : C → C be holomorphic. We say that f has a pole
at infinity of order N ∈ N if the function g(z) := f(1/z) has a pole of order N at
the origin in the usual sense. Prove that if f : C → C has a pole of order N ∈ N at
infinity, then it has to be a polynomial of degree N ∈ N.

Solution: Since f is holomorphic, the expansion

f(z) =
+∞∑
k=0

akzk,

converges in any ball centered in 0. If f has a pole at infinity of order N , by definition
for z ̸= 0

g(z) = f(1/z) =
+∞∑
k=0

akz−k

has a pole of order N at zero, which means

zNg(z) =
+∞∑
k=0

akzN−k

is holomorphic in a neighbourhood of 0. This implies that ak = 0 for every k > N
and aN ̸= 0, proving that

f(z) =
N∑

k=0
akzk,

that is, f is a polynomial of degree N as claimed.

8.3. Meromorphic functions For z ∈ C such that sin(z) ̸= 0 define the map

cotan(z) = cos(z)
sin(z) .
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(a) Show that cotan is meromorphic in C, determine its poles and their residues.

Solution: Notice that sin(z) = 0 if and only if z = kπ for some k ∈ Z, and therefore
cotan is holomorphic in the open domain C \ {kπ : k ∈ Z}. Since {kπ : k ∈ Z} has
no accumulation points in C, in order to prove that cotan is meromorphic we are left
to show that its singularities are in fact poles. By definition z = kπ is a pole of cotan
if it is a zero of 1/ cotan = tan, which is the case since cos(kπ) = (−1)k. To compute
the residues we notice that all poles have order one since the zeros of tan have order
one:

tan(z)′ |z=kπ= 1
cos2(z)

∣∣∣∣
z=kπ

= 1 ̸= 0.

Therefore,

reskπ cotan = lim
z→kπ

(z − kπ)cos(z)
sin(z) = (−1)k lim

z→kπ

(z − kπ)
sin(z) = (−1)2k = 1,

since

lim
z→kπ

sin(z)
z − kπ

= lim
z→kπ

cos(kπ)(z − kπ) + O(|z − kπ|2)
(z − kπ) = (−1)k,

by expanding sin(z) around kπ at the first order.

(b) Let w ∈ C \ Z and define

f(z) = π cotan(πz)
(z + w)2 .

Show that f is meromorphic in C, determine its poles and their residues.

Solution: Since z 7→ cotan(πz) and z 7→ 1/(z + w)2 are meromorphic, f is also
meromorphic by being the multiplication of the two. Thanks to the previous point,
the set of poles of f are Z ∪ {−w}. The residues at k ∈ Z are given by

resk f = 1
(k + w)2 lim

z→k

π(z − k) cos(πz)
sin(πz)

= (−1)k

(k + w)2 lim
z→k

π(z − k)
π cos(πz)(z − k) + O(|z − k|2) = 1

(k + w)2 .

To compute the order of −w observe that cotan(πz) is equal to zero if and only if
z = k + 1/2, k ∈ Z. Hence, if −w = k + 1/2, then the pole has order 1 and

res−w f = lim
z→−w

(z + w)f(z) = lim
z→−w

π cos(πz)
sin(πz)(z + w)

= lim
z→−w

π(−π sin(−πw)(z + w) + O(|z + w|2))
sin(−πw)(z + w) = −π2 = − π2

sin(πw)2 .
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If −w ̸= k + 1/2, then the pole has order 2, and

res−w f = lim
z→−w

(
(z + w)2f(z)

)′
= lim

z→−w
(π cotan(πz))′ = − π2

sin2(πw)2 .

(c) Compute for every integer n ≥ 1 such that |w| < n the line integral∫
γn

f dz,

where γn is the circle or radius n + 1/2 centered at the origin and positively oriented.

Solution: Observe that γn does not intersect with any of the poles of f and contains
the pole −w. We can therefore apply the Residue Theorem obtaining∫

γn

f dz = 2πi
(

res−w f +
n∑

k=−n

resk f
)

= 2πi
(

− π2

sin2(πw) +
n∑

k=−n

1
(w + k)2

)
.

(d) Deduce that

lim
n→+∞

n∑
k=−n

1
(w + k)2 = π2

sin(πw)2 .

Solution: From the previous point, since
k∑

k=−k

1
(w + k)2 = 1

2πi

∫
γn

f dz + π2

sin(πw)2 ,

it suffices to prove that the integral on γn vanishes as n → +∞. Observe that

|cotan(πz)| =
∣∣∣∣∣ieiπz + e−iπz

eiπz − e−iπz

∣∣∣∣∣ =
∣∣∣∣∣1 + e2iπz

e2iπz − 1

∣∣∣∣∣ ≤ 1 + |e2iπz|
||e2πiz| − 1|

= 1 + e−2πℑ(z)

|e−2πℑ(z) − 1|
.

taking advantage of the reverse triangle inequality |w − u| ≥ ||w| − |u||. Hence, for
every ε > 0 the function cotan(πz) is uniformly bounded in the half plane {ℑ(z) > ε}
by C(ε) = 2/(1 − e−2πε) > 0. The same holds true in the half plane {ℑ(z) < −ε}
since cotan(−πz) = − cotan(πz). Let now n ∈ Z and consider a point in a 2ε-
neighbourhood of nπ + 1/2, i.e. u = n + 1/2 + τ , for τ ∈ C, |τ | < 2ε. Then, taking
advantage of the classical trigonometric identities we can compute

cotan(πu) = cos(u)
sin(u) = cos(π(n + 1/2)) cos(πτ) − sin(π(n + 1/2)) sin(πτ)

sin(π(n + 1/2)) cos(πτ) + cos(π(n + 1/2)) sin(πτ)

= − sin(πτ)
cos(πτ) = − tan(πτ),
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whose norm is controlled uniformly in n by some constant C ′ = C ′(ε) > 0 provided
ε < 1/2. Hence, fixing ε < 1/2 and covering every circle γn with two half planes and
two balls centered in the intersection of the real axis we can estimate∣∣∣∣∫

γn

f dx
∣∣∣∣ ≤

∫
γn

|f | dz ≤ length(γn) π max{C, C ′}
(n + 1/2 − |w|)2

= 2π2(n + 1/2) max{C, C ′}
(n + 1/2 − |w|)2 → 0,

as n → +∞, as wished.

2ε

8.4. ⋆ Real integrals Compute the following real integrals taking advantage of
the Residue Theorem1.

(a) ∫ 2π

0

1
1 + sin2(t) dt

Solution: We start by noting that on the unit circle we can express sin t in terms of
z:

sin t = z − z−1

2i

Thus,

sin2 t =
(

z − z−1

2i

)2

= (z − z−1)2

−4
1Recall: {z1, . . . , zN } ⊂ Ω poles and f : Ω \ {z1, . . . , zN } → C holomorphic. Then if {z1, . . . , zN }

are inside a simple closed curve γ in Ω, then
∫

γ
f dz = 2πi

∑N
j=1 reszj

(f).
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Simplify the numerator:

(z − z−1)2 = z2 − 2 + z−2

So,

sin2 t = z2 + z−2 − 2
−4

Therefore,

1 + sin2 t = 1 − z2 + z−2 − 2
4 = 6 − z2 − z−2

4

Using z = eit, we have dt = dz
iz

. Substituting into I, we get:

I =
∮

C

4
6 − z2 − z−2 · dz

iz

Simplify:

I = 1
i

∮
C

4z

6z2 − z4 − 1 dz

Set D(z) = −(z4 − 6z2 + 1). Factor D(z) by finding the roots of z4 − 6z2 + 1 = 0:

z2 = 3 ± 2
√

2 =⇒ z = ±
√

3 + 2
√

2, z = ±
√

3 − 2
√

2

Simplify the radicals:√
3 + 2

√
2 =

√
(
√

2 + 1)2 =
√

2 + 1√
3 − 2

√
2 =

√
(
√

2 − 1)2 =
√

2 − 1
Thus,

D(z) = −
(
z − (

√
2 + 1)

) (
z + (

√
2 + 1)

) (
z − (

√
2 − 1)

) (
z + (

√
2 − 1)

)
Write the integrand as:

z

(z2 − a)(z2 − b) = Cz

z2 − a
+ Dz

z2 − b

where a = (
√

2 + 1)2 and b = (
√

2 − 1)2.
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Solving for C and D yields:

C = 1
4
√

2
, D = − 1

4
√

2

So,

I = i√
2

∮
C

(
z

z2 − a
− z

z2 − b

)
dz

Only the poles inside the unit circle (|z| < 1) contribute to the integral, which are
z = ±(

√
2 − 1). The residues at these poles are:

Resz=±(
√

2−1)

(
z

z2 − b

)
= 1

2

The total residue inside the contour is 1.

Using the residue theorem:

I = i√
2

· (−2πi) · (1) =
√

2π

(b) ∫ ∞

0

cos(x)
x2 + 1 dx

Solution: Consider the function:

f(z) = eiz

z2 + 1 .

The function f(z) has simple poles at z = ±i. We consider the contour consisting of
the real axis from −R to R, and a semicircle in the upper half-plane of radius R.

By the residue theorem, the value of the contour integral is:∫
contour

f(z) dz = 2πi · Res(f, i),

where the residue of f(z) at z = i is:

Res(f, i) = lim
z→i

(z − i) eiz

z2 + 1 = e−1

2i
.
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Thus, the contour integral evaluates to:∫
contour

f(z) dz = 2πi · e−1

2i
= πe−1.

The integral along the real axis can be expressed as:∫ ∞

−∞

eiz

z2 + 1 dz =
∫ ∞

−∞

cos(x)
x2 + 1 dx + i

∫ ∞

−∞

sin(x)
x2 + 1 dx.

Since sin(x) is an odd function and sin(x)
x2+1 is odd as well, the integral of the sine term

vanishes:∫ ∞

−∞

sin(x)
x2 + 1 dx = 0.

This leaves:∫ ∞

−∞

eiz

z2 + 1 dz =
∫ ∞

−∞

cos(x)
x2 + 1 dx = πe−1.

Since cos(x) is an even function, the integral over [0, ∞) is half of the integral over
(−∞, ∞):∫ ∞

0

cos(x)
x2 + 1 dx = 1

2

∫ ∞

−∞

cos(x)
x2 + 1 dx.

Thus:∫ ∞

0

cos(x)
x2 + 1 dx = πe−1

2 .

8.5. Quotient of holomorphic functions Let f, g be two non-constant holomorphic
functions on C. Show that if |f(z)| ≤ |g(z)| for all z ∈ C, then there exists c ∈ C
such that f(z) = cg(z).

Solution: Let h(z) = f(z)
g(z) . Since g is not constant, it has isolated zeros, and hence

h has isolated singularities. By assumption |h(z)| ≤ 1 for all z such that g(z) ̸= 0.
In particular, h is bounded in a neighbourhood of the zeros of g, and therefore we
extend h to an entire function on the whole complex plane taking advantage of the
Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h
is also uniformly bounded by 1, and therefore by Liouville’s Theorem it has to be
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equal to some constant c ∈ C. This proves that for all z ∈ C such that g(z) ̸= 0 one
has that f(z) = cg(z). If g(z) = 0 the assumption |f(z)| ≤ |g(z)| = 0 concludes the
argument: f(z) = 0 = cg(z).

8.6. ⋆ Let P (z) be a complex polynomial of degree n and R > 0 so large that
P (z) does not vanish in {z : |z| ≥ R}. Let γ be the path with γ(t) = Reit , with
0 ≤ t ≤ 2π. Show that

1
2πi

∫
γ

P ′(z)
P (z) dz = n.

Solution: Let P (z) = ∏
k(z − ak)mk with ak ∈ C and ∑

k mk = n. Then using the
product rule for differentiation it is easy to see that

P ′(z)
P (z) =

∑
k

mk

z − ak

.

Since all the zeroes, ak, of P (z) lie in the region {z : |z| < R} we have

1
2πi

∫
γ

P ′(z)
P (z) dz = 1

2πi

∑
k

mk

∫
γ

1
z − ak

dz = 1
2πi

∑
k

mk(2πi) = n
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