D-MATH Complex Analysis ETH Ziirich
Prof. Dr. O. Imamoglu Solutions 8 HS 2024

8.1. MC Questions

(a) Consider the real integral [ = [*°_ —15 dx. This can be computed using Cauchy’s

—00 14z2

Residue Theorem. Which of the following is false?

A) Let v(R) be a closed semicircle of radius R > 1 (centered at the origin) in
the lower half of the complex plane, which is traced counterclockwise. Then

B) Let v(R) be a closed semicircle of radius R > 1(centered at the origin) in the
lower half of the complex plane, traced clockwise. Then I = limp_o0 $, () H% dz.

C) I =2miRes (H%,z = z)

D) I =—2miRes (s, 2 = —i)

Solution: A) is false as it results in [_* H% dx = —1, given the orientation of the

semicircle. B) is correct C) and D) are also true, as
1 i Nt
Res— (1) = i G+ D

: : 1
= Zlin}i(z + z)m

= lim -
Zz=—1 Z — 9

1
—i—1

11

22

and similarly

1 . N
Res () = MG =Dy

1
— N
. 1
= lim -
z—=i 2+
1

T+

2

(b) Let f(2) = ﬁ What is the order of the pole of f(z) at z =17
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Solution: The order of the pole is the highest power of (z — 1) in the denominator
that cannot be canceled by any term in the numerator. In this case the factor e is
analytic (holomorphic) at z = 1, so it does not affect the order of the pole. Hence,
the term (z — 1)? in the denominator determines the order of the pole. Since there is
no cancellation, the pole at z = 1 is of order 3.

8.2. Poles at infinity Let f : C — C be holomorphic. We say that f has a pole
at infinity of order N € N if the function g(z) := f(1/z) has a pole of order N at
the origin in the usual sense. Prove that if f : C — C has a pole of order N € N at
infinity, then it has to be a polynomial of degree N € N.

Solution: Since f is holomorphic, the expansion
00 )
f(2) =" ar”,
k=0

converges in any ball centered in 0. If f has a pole at infinity of order N, by definition
for z £ 0

“+o0o
9(2) = f(1/2) =Y apz™"
k=0
has a pole of order N at zero, which means
+00
Ng(z) = a2V F
k=0

is holomorphic in a neighbourhood of 0. This implies that a; = 0 for every k& > N
and ay # 0, proving that

N
f(2) =" az",
k=0
that is, f is a polynomial of degree N as claimed.

8.3. Meromorphic functions For z € C such that sin(z) # 0 define the map

cotan(z) = cos(2)

sin(z)
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(a) Show that cotan is meromorphic in C, determine its poles and their residues.

Solution: Notice that sin(z) = 0 if and only if z = k7 for some k € Z, and therefore
cotan is holomorphic in the open domain C\ {kn : k € Z}. Since {kw : k € Z} has
no accumulation points in C, in order to prove that cotan is meromorphic we are left
to show that its singularities are in fact poles. By definition z = k7 is a pole of cotan
if it is a zero of 1/ cotan = tan, which is the case since cos(km) = (—1)*. To compute
the residues we notice that all poles have order one since the zeros of tan have order
one:

1

tan(z)" [.mgr= =1#0.
an(z)’ |,—k c052(2) |- #
Therefore,
resg, cotan = lim (z — kﬂ)c?s(z) = (=1)* lim M = (=1)* =1,
z—km SIH(Z) z—km SIH(Z)
since
' _ 2
lim sin(z) — lim cos(km)(z — km) + O(|z — kn|?) (),
z—km 7 — ki z—km (Z — ]{;7‘()

by expanding sin(z) around k7 at the first order.

(b) Let w € C\ Z and define

f(z) =

Show that f is meromorphic in C, determine its poles and their residues.

7 cotan(7z)
(z +w)?

Solution: Since z +— cotan(nz) and z — 1/(z + w)? are meromorphic, f is also
meromorphic by being the multiplication of the two. Thanks to the previous point,
the set of poles of f are Z U {—w}. The residues at k € Z are given by

_ 1 w(z— k) cos(n2)
resy f = (k + w)? ok sin(mz)
(-1)* m(z — k) :

(k + w)? 2ok weos(mz)(z — k) + O(lz — k|2)  (k+w)*

To compute the order of —w observe that cotan(rz) is equal to zero if and only if
z=k+1/2, k € Z. Hence, if —w = k 4 1/2, then the pole has order 1 and

e f = lim (- 0f () = Jim, G
_ oy Femsinrw)ztw) +O(zwl) o, 7
e sin(—mw)(z + w) Bl ~ sin(rw)?
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If —w # k + 1/2, then the pole has order 2, and

7T2

res_, [ = lim ((2 + w)Zf(z)>/ = lim (7 cotan(7z)) = —

z——w z——w sjn2 (71'71))2 '
(c) Compute for every integer n > 1 such that |w| < n the line integral
fdz,
Yn
where ~, is the circle or radius n + 1/2 centered at the origin and positively oriented.

Solution: Observe that ~, does not intersect with any of the poles of f and contains
the pole —w. We can therefore apply the Residue Theorem obtaining

/n fdz= 2m’<res_wf + él;nresk f) = 2m<_sinzﬂ(jrw) + kf:n W)

(d) Deduce that

n 1 ’/T2

lim Z 5 =

notoo £~ (w+k)?  sin(rw)?’

Solution: From the previous point, since

k 2
1 1
dz + T

k;k (w+ k)2 = o o / sin(7w)?’

it suffices to prove that the integral on +, vanishes as n — +o00. Observe that

1 + 62i7rz
62i7rz -1

eiwz + e—iwz

e’Lﬂ'Z — ef’Lﬂ'Z

= H€27riz| _ 1‘ - ’67271'3(2) _ 1"

|cotan(7z)| =

~

taking advantage of the reverse triangle inequality |w — u| > ||w| — |u||. Hence, for
every € > 0 the function cotan(mz) is uniformly bounded in the half plane {(2) > ¢}
by C(g) = 2/(1 —e2™) > 0. The same holds true in the half plane {J(z) < —¢}
since cotan(—mz) = —cotan(wz). Let now n € Z and consider a point in a 2e-
neighbourhood of nm 4+ 1/2, i.e. u =n+1/2+ 7, for 7 € C, |7| < 2¢. Then, taking
advantage of the classical trigonometric identities we can compute

cos(u)  cos(m(n +1/2))cos(m7) — sin(w(n + 1/2)) sin(77)

cotan(mu) = sin.(u)  sin(m(n + 1/2)) cos(w7) + cos(m(n + 1/2)) sin(77)
- o)
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whose norm is controlled uniformly in n by some constant C’ = C’(¢) > 0 provided
e < 1/2. Hence, fixing € < 1/2 and covering every circle 7, with two half planes and
two balls centered in the intersection of the real axis we can estimate

mmax{C,C"}
/%fd:r’ < [ 1f1dz < length(3,) 18 el
_ 2r%(n+1/2) max{C,C"}
(A 1/2— w])?

— 0,

as n — 400, as wished.

8.4. * Real integrals Compute the following real integrals taking advantage of
the Residue Theorem!,

(a) . X
[ sin2 () &

Solution: We start by noting that on the unit circle we can express sint in terms of
z:

z— 271

21

sint =

Thus,

sin?t = (Z — Z_1>2 - 7(2 —2 )

21 —4

Recall: {z1,...,25} C Q poles and f: Q\ {z1,...,2x} — C holomorphic. Then if {21,..., 2y}
are inside a simple closed curve v in 2, then f,y fdz=2mi Zjvzl res.; (f).
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Simplify the numerator:

(z—2 12 =22—-24272

So,
2 -2
. 9 204274 =2
t:—
sin —
Therefore,
1+Sm2t_1_22+z_2—2_6—z2—z_2

4 4
Using z = €', we have dt = %. Substituting into I, we get:

1—7(4 dz
S Joe6—22—22 4z

Simplify:

1 4z
]:—f—d
o2 A 1Y

Set D(z) = —(2* — 62% + 1). Factor D(z) by finding the roots of 2* — 622 +1 = 0:

2 =34+2V/2 — z=4\/3+2V2, z=4\/3-2V2

Simplify the radicals:

V3+2v2=/(vV2+12=v2+1
V3—2v2=\/(vV2-12=v2-1

Thus,

D(z) =~ (2= (vV2+1) (24 (V2+1) (= (v2-1)) (2 + (V2 - 1))

Write the integrand as:

z _Cz n Dz
(22—a)(z2—b) 22—a 22—b

where a = (v2+1)? and b = (v/2 — 1)2.

6/9
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Solving for C' and D yields:

1 1
C=—— D=———_
42’ 42

So,

1 z z
VIS
V2 Jo\z2—a 22-b dz

Only the poles inside the unit circle (|z| < 1) contribute to the integral, which are
z = 4(+v/2 — 1). The residues at these poles are:

z 1
Res,_+(va-1) (M) =3

The total residue inside the contour is 1.

Using the residue theorem:

I=— (=2m)-(1)=+2n

V2
(b)

Solution: Consider the function:

622

fz) = 2241

The function f(z) has simple poles at z = +i. We consider the contour consisting of
the real axis from —R to R, and a semicircle in the upper half-plane of radius R.

By the residue theorem, the value of the contour integral is:

/ £(2)dz = 2mi - Res(f, 1),

where the residue of f(z) at z =i is:

Res(f, 1) = lim( ')LZ -
€S 1) = 1m(z2 —1 = .
’ Z—i 2+1 2
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Thus, the contour integral evaluates to:

-1

/ f(z)dz:2m'-62—,:7re_1.
contour

?

The integral along the real axis can be expressed as:

/00 e dZ:/OO cos(x) dx+z'/oo sin(z) .

—o0 2241 oo 2241 —o0 241
Since sin(z) is an odd function and = Qfl is odd as well, the integral of the sine term
vanishes:
% sin(x)
dr =0
/oo x? +1 o

This leaves:

/Oo ¢ dz = /Oo cos(z) dr = we L.

—ooZQ—'—]_ —001?2+1

Since cos(x) is an even function, the integral over [0, c0) is half of the integral over
(—00, 00):

/OO cos(x /OO cos(x
o x2+ 1 T 9 ) 22 + 1
Thus:
/00 cos () D — e !
o x2+1 2

8.5. Quotient of holomorphic functions Let f, g be two non-constant holomorphic
functions on C. Show that if |f(2)| < |g(z)| for all z € C, then there exists ¢ € C
such that f(z) = cg(z2).

Solution: Let h(z) = %. Since ¢ is not constant, it has isolated zeros, and hence
h has isolated singularities. By assumption |h(z)| < 1 for all z such that g(z) # 0.
In particular, A is bounded in a neighbourhood of the zeros of g, and therefore we
extend h to an entire function on the whole complex plane taking advantage of the
Riemann continuation Theorem (cf Exercise 5.5). By continuity, the extension h
is also uniformly bounded by 1, and therefore by Liouville’s Theorem it has to be

8/9
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equal to some constant ¢ € C. This proves that for all z € C such that g(z) # 0 one
has that f(z) = cg(z). If g(z) = 0 the assumption |f(z)| < |g(2)| = 0 concludes the
argument: f(z) =0 = cg(2).

8.6. x Let P(z) be a complex polynomial of degree n and R > 0 so large that
P(z) does not vanish in {z : |z| > R}. Let v be the path with () = Re® | with
0 <t < 2m. Show that

1 P'(2)
omi Jy P(z)

dz = n.

Solution: Let P(z) = [I,(z — ax)™ with a; € C and Y, my, = n. Then using the
product rule for differentiation it is easy to see that

P m
Pz~

L Z — Q

Since all the zeroes, ag, of P(z) lie in the region {z : |z] < R} we have

1 P'(2) 1 :
— dz / . i) =
2mi Jy P(2) 27?2 k z— ak T omi zk: e 2mi)




