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9.1. MC Questions

(a) Suppose f(z) = z3 + 3z + 2 and g(z) = z3 + 2. What’s the number of zeros of
f(z) + g(z) inside |z| = 2?

A) 0

B) 6

C) 1

D) 3

Solution: Choose:

u(z) = 2z3, v(z) = 3z + 4,

and consider the contour |z| = 2.

On |z| = 2:

• For u(z) = 2z3, we calculate:

|u(z)| = |2z3| = 2|z|3 = 2(23) = 16.

• For v(z) = 3z + 4, we use the triangle inequality:

|v(z)| ≤ |3z| + |4| = 3|z| + 4 = 3(2) + 4 = 10.

Thus, Rouche’s theorem can be directly applied. The function u(z) = 2z3 has exactly
3 zeros (counting multiplicities) inside |z| = 2. Since u(z) and u(z) + v(z) = h(z)
have the same number of zeros inside |z| = 2, the number of zeros of h(z) is also 3.

(b) Let f(z) : C → C∪{∞} be a meromorphic function on C. Which of the following
conditions is both necessary and sufficient for f(z) to be a rational function?

A) f(z) has no singularities on C.

B) f(z) is holomorphic everywhere except for a finite number of poles.

C) f(z) has at most a pole at infinity and at most finitely many poles in C.

D) f(z) has finitely many singularities.

Solution:

• A) is incorrect because having no singularities implies that f(z) is an entire
function, not a rational function. Entire functions are not necessarily rational
(e.g., ez is entire but not rational).
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• B) is necessary but not sufficient. For example ez

z
has finitely many poles but is

not a rational function.

• C) is the correct answer. The conditions in C) imply that we can extend the
function f to a function F : Ĉ → Ĉ which is meromorphic on Ĉ. Using exercise
9.3(c) we conclude that F : Ĉ → Ĉ is a rational function, and hence so is f . It
is clear that of f is a rational function then it has the stated properties.

• D) is incorrect. For example e1/z has a singularity only at z = 0 (which is an
essential singularity) and it is not a rational function.

9.2. Laurent Series A Laurent series centered at z0 ∈ C is a series of the form∑
n∈Z

an(z − z0)n = · · · + a−2

(z − z0)2 + a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + . . .

where (an)n∈Z ⊂ C. We define ρ0, ρI ∈ [0, +∞] the outer and inner radius of
convergence as

ρ0 :=
(

lim sup
n→+∞

|an|1/n
)−1

, ρI := lim sup
n→+∞

|a−n|1/n.

If ρI < ρ0, we define the annulus of convergence as

A(z0, ρI , ρ0) := {z ∈ C : ρI < |z − z0| < ρ0},

with the convention A(z0, ρI , +∞) = {z ∈ C : ρI < |z − z0|}, so that in particular
A(z0, 0, +∞) = C \ {z0}.

(a) Show that if ρ0 > 0, then the series

f0(z) :=
+∞∑
n=0

an(z − z0)n, z ∈ D0(z0, ρ0) := {z ∈ C : |z − z0| < ρ0},

converges absolutely and uniformly on compact sets. Show that if ρI < +∞, then
the series

fI(z) :=
+∞∑
n=1

a−n(z − z0)−n, z ∈ DI(z0, ρI) := {z ∈ C : ρI < |z − z0|},

converges absolutely and uniformly on compact sets.

Solution: In the case ρ0 > 0, notice that f0 and ρ0 coincide with a Taylor expansion
in z0 and the radius of convergence of its associated power series. We know that the
series defining f0 converges absolutely and uniformly on compact subsets of D0(z0, ρ0)
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(by Theorem 2.5 in the Lecture Notes). For the case ρI < +∞, consider first the
power series

gI(ζ) =
+∞∑
n=1

a−nζn.

Then, by the same argument as in the previous case, we know that gI converges
absolutely and uniformly on compact subset in D(0, 1/ρI), the ball centered at 0
and of radius (lim supn→+∞|a−n|1/n)−1 = 1/ρI . Consider the change of variable
ζ = (z − z0)−1. Now, the map F (z) = (z − z0)−1 sends DI(z0, ρI) to D(0, 1/ρI) \ {0}
continuously, and therefore it sends compact subsets of DI(z0, ρI) to compact subsets
of D(0, 1/ρI) \ {0}. From the relation fI = gI ◦ F we deduce that fI also converges
uniformly on compact subsets in DI(z0, ρI) as wished.

(b) Show that a Laurent series is divergent for any z satisfying |z − z0| > ρ0 or
|z − z0| < ρI .

Solution: The argument is similar to point (a): if |z − z0| > ρ0 the series f0(z)
diverges, again by Theorem 2.5 in the Lecture Notes. The same hold for gI(ζ) when
|ζ| = |z − z0|−1 > 1/ρI , and hence for fI(z) when |z − z0| < ρI . Since f = f0 + fI we
conclude that f(z) diverges if |z − z0| < ρI or |z − z0| > ρ0 as wished.

(c) Deduce that the full Laurent series

f(z) :=
∑
n∈Z

an(z − z0)n

defines an analytic function in A(z0, ρI , ρ0), and its coefficients are related to f by
the formula

an = 1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1 dz,

for any n ∈ Z and r ∈ (ρI , ρ0).

Solution: Since f = fI + f0 and fI is analytic in DI(z0, ρI) and f0 is analytic in
D0(z0, ρ0) by point (a), we deduce that f is analytic in A(z0, ρI , ρ0) = DI(z0, ρ0) ∩
D0(z0, ρI). Let r ∈ (ρI , ρ0) and ε > 0 small enough so that K = A(z0, r − ε, r + ε) ⊂
A(z0, ρI , ρ0). Since f converges absolutely an uniformly on the compact set K, we
have that

1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1 dz =

∑
k∈Z

ak
1

2πi

∫
|z−z0|=r

(z − z0)k−(n+1) dz = an,

where we exchanged sum and integration by Fubini thanks to the uniform convergence
of the series defining f in the compact set K.
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9.3. Meromorphic functions Recall the definition of Ĉ := C ∪ {∞}.

(a) Let f : C → Ĉ be meromorphic. Show that f has at most countably many poles.

Solution: Since by definition the poles of a meromorphic function cannot have
limit points, any compact subset of C contains at most finitely many poles. Since
every open set Ω in C is a union of countably many compact sets (for instance,
C = ⋃+∞

n=1{z ∈ C : |z| ≤ n}), it follows that the set of poles of f is at most countable.

(b) Let f : Ĉ → Ĉ be meromorphic on Ĉ. Show that f has at most finitely many
poles.

Solution: There exists R > 0 such that f is holomorphic for every |z| > R. Hence,
the poles of f are contained in the compact set {|z| ≤ R} with the possible exception
of ∞. Again, since by definition there is no accumulation point, the number of poles
must be finite.

(c) Deduce that if f : Ĉ → Ĉ is meromorphic on Ĉ, than it is a rational function.

Solution: By point (b) we know that the zeros of f in C are finite, and we can
therefore denote them {z1, . . . , zN} with respective order {n1, . . . , nN}. For each
k ∈ {1, . . . , N} we can express f in a neighbourhood of zk as

f(z) =
nk∑

n=1

ak
−n

(z − zk)n
+

+∞∑
n=0

ak
n(z − zk)n = fk(z) + gk(z),

for coefficients (ak
n)n≥−nk

, where fk is the principal part of f at zk, and gk is holomor-
phic in a neighbourhood of zk. Similarly,

f(1/z) = f∞(z) + g∞(z),

where g∞ is holomorphic in a neighbourhood of the origin, and f∞ is the principal
part of f(1/z) at zero. Define now C(z) = f(z) − f∞(1/z) − ∑N

k=1 fk(z). Notice that
since we removed the principal parts of f at each zk in the definition of C(z), we
deduce that {z1, . . . , zN} are removable singularities of C(z). The same holds for the
possible pole at ∞ since C(1/z) is bounded in a neighbourhood of zero, and therefore
C(z) is bounded in C. Hence, by Liouville’s Theorem, C(z) ≡ c ∈ C is constant, and
therefore f(z) = c + f∞(1/z) + ∑N

k=1 fk(z) is rational, as claimed.

9.4. Generalization of the Argument Principle

(a) Let Ω ⊂ C open, z0 ∈ Ω and r > 0 such that D̄(z0, r) = {z ∈ C : |z − z0| ≤
r} ⊂ Ω. Suppose that f : Ω → C is homolorphic and that f(z) ̸= 0 on the circle
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∂D(z0, r) = {z ∈ C : |z−z0| = r}. Show that for any holomorphic function φ : Ω → C
we have that

1
2πi

∫
|z−z0|=r

f ′

f
φ dz =

∑
w∈D(z0,r):f(w)=0

(ordw f)φ(w).

Solution: Let w be a zero of f of order n. Then, there exists g holomorphic and
non-vanishing such that f(z) = (z − w)ng(z). From

f ′(z)
f(z) φ(z) = n

z − w
g(z)φ(z) + g′(z)

g(z) φ(z)

we deduce that if φ(w) = 0, then w is not a zero of f ′φ/f , and hence ordw(f ′φ/f) =
0 = (ordw f)φ(w). On the other side, if φ(w) ̸= 0, then w is pole of order one of
f ′φ/f with residue

resw(f ′φ/f) = lim
z→w

(ng(z)φ(z)+(z−w)g′(z)φ(z)/g(z)) = ng(w)φ(w) = (ordw f)φ(w).

We apply the Residue Theorem to conclude:

1
2πi

∫
|z−z0|=r

f ′

f
φ dz =

∑
w pole in |z−z0|<r

resw

(
f ′φ

f

)
=

∑
w∈D(z0,r):f(w)=0

(ordw f)φ(w).

(b) Compute
∫

|z|=2

zez3+1

z2 + 1dz

Solution: The integral can be rewritten as:
∫

|z|=2

zez3+1

z2 + 1 dz =
∫

|z|=2

f ′(z)
f(z) · φ(z) dz,

where:

f(z) = z2 + 1, f ′(z) = 2z, and φ(z) = ez3+1

2 .

The zeros of f(z) = z2 + 1 are w = i and w = −i, each with ordw f = 1.

We compute:

φ(z) = ez3+1

2 .
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At w = i:

φ(i) = ei3+1

2 = e−i+1

2 .

At w = −i:

φ(−i) = e(−i)3+1

2 = ei+1

2 .

The formula gives:∫
|z|=2

zez3+1

z2 + 1 dz = 2πi ·
∑

w=i,−i

(ordw f)φ(w).

Substitute φ(w) and ordw f = 1:∫
|z|=2

zez3+1

z2 + 1 dz = 2πi · (φ(i) + φ(−i)) .

Substitute the values of φ(i) and φ(−i):

φ(i) + φ(−i) = e−i+1

2 + ei+1

2 .

Simplify:

φ(i) + φ(−i) = 1
2

(
e−i+1 + ei+1

)
.

Using Euler’s formula:

e−i+1 = e · (cos(1) − i sin(1)), ei+1 = e · (cos(1) + i sin(1)).

Add:

e−i+1 + ei+1 = 2e cos(1).

Thus:

φ(i) + φ(−i) = 1
2 · 2e cos(1) = e cos(1).

The integral is:∫
|z|=2

zez3+1

z2 + 1 dz = 2πi · e cos(1).

6/8



d-math
Prof. Dr. Ö. Imamoglu

Complex Analysis
Solutions 9

ETH Zürich
HS 2024

9.5. Application of Rouché Theorem Let f(z) be a holomorphic function inside
the unit disk |z| < 1, with the Taylor series expansion:

f(z) =
∞∑

n=0
cnzn.

Suppose f(z) is continuous on the closed unit disk and that it has exactly m zeros
(counted with multiplicity) inside |z| < 1. Prove that:

min
|z|=1

|f(z)| ≤ |c0| + |c1| + · · · + |cm|.

Solution: Assume, towards a contradiction, that

min
|z|=1

|f(z)| > |c0| + |c1| + · · · + |cm|.

By continuity of f(z), this inequality also holds on circles of radius 1 − ϵ for all
sufficiently small ϵ > 0, i.e.,

min
|z|=1−ϵ

|f(z)| > |c0| + |c1| + · · · + |cm|.

Consider the polynomial p(z) of degree m, consisting of the first m + 1 terms of the
Taylor series of f(z):

p(z) = c0 + c1z + c2z
2 + · · · + cmzm.

By assumption, p(z) is not identically zero. If p(z) were identically zero, then f(z)
would have at least m+1 zeros inside the open unit disk, contradicting the assumption
that f(z) has exactly m zeros.

Since p(z) is a polynomial of degree m, it has at most m zeros. For ϵ > 0 small
enough, the open disk of radius 1 − ϵ contains all the zeros of p(z) that are within
the open unit disk |z| < 1.

By continuity and the assumption that min|z|=1 |f(z)| > |c0| + |c1| + · · · + |cm|, it
follows that

|f(z)| > |c0| + |c1| + · · · + |cm| ≥ |p(z)|,

on |z| = 1 − ϵ. Therefore, |f(z)| > |p(z)| on the circle |z| = 1 − ϵ.

We apply Rouché’s theorem: if |f(z)| > |p(z)| on |z| = 1−ϵ, then f(z) and f(z)−p(z)
have the same number of zeros (counted with multiplicity) inside the disk |z| < 1 − ϵ.
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Since f(z) − p(z) involves higher-order terms starting from cm+1z
m+1, this implies

that f(z) − p(z) has at least m + 1 zeros. Thus, f(z) must also have at least m + 1
zeros in |z| < 1 − ϵ. However, this contradicts the assumption that f(z) has exactly
m zeros in |z| < 1.

The assumption that min|z|=1 |f(z)| > |c0| + |c1| + · · · + |cm| leads to a contradiction.
Therefore, we conclude that

min
|z|=1

|f(z)| ≤ |c0| + |c1| + · · · + |cm|.
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