9.1. MC Questions

(a) Suppose $f(z) = z^3 + 3z + 2$ and $g(z) = z^3 + 2$. What's the number of zeros of $f(z) + q(z)$ inside $|z| = 2$?

- $A)$ 0 C) 1
- B) 6 D) 3

Solution: Choose:

 $u(z) = 2z^3$, $v(z) = 3z + 4$,

and consider the contour $|z| = 2$.

On $|z| = 2$:

• For $u(z) = 2z^3$, we calculate:

$$
|u(z)| = |2z^3| = 2|z|^3 = 2(2^3) = 16.
$$

• For $v(z) = 3z + 4$, we use the triangle inequality:

$$
|v(z)| \le |3z| + |4| = 3|z| + 4 = 3(2) + 4 = 10.
$$

Thus, Rouche's theorem can be directly applied. The function $u(z) = 2z^3$ has exactly 3 zeros (counting multiplicities) inside $|z| = 2$. Since $u(z)$ and $u(z) + v(z) = h(z)$ have the same number of zeros inside $|z| = 2$, the number of zeros of $h(z)$ is also **3**.

(b) Let $f(z): \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function on \mathbb{C} . Which of the following conditions is both necessary **and** sufficient for $f(z)$ to be a rational function?

- A) $f(z)$ has no singularities on \mathbb{C} .
- B) $f(z)$ is holomorphic everywhere except for a finite number of poles.
- C) $f(z)$ has at most a pole at infinity and at most finitely many poles in \mathbb{C} .
- D) $f(z)$ has finitely many singularities.

Solution:

• A) is incorrect because having **no singularities** implies that *f*(*z*) is an *entire function*, not a rational function. Entire functions are not necessarily rational (e.g., e^z is entire but not rational).

- B) is *necessary* but not *sufficient*. For example $\frac{e^z}{z}$ $\frac{e^2}{z}$ has finitely many poles but is not a rational function.
- C) is the correct answer. The conditions in C) imply that we can extend the function *f* to a function $F: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ which is meromorphic on $\hat{\mathbb{C}}$. Using exercise 9.3(c) we conclude that $F: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a rational function, and hence so is *f*. It is clear that of *f* is a rational function then it has the stated properties.
- D) is incorrect. For example $e^{1/z}$ has a singularity only at $z = 0$ (which is an essential singularity) and it is not a rational function.
- **9.2. Laurent Series** A *Laurent series* centered at $z_0 \in \mathbb{C}$ is a series of the form

$$
\sum_{n\in\mathbb{Z}} a_n(z-z_0)^n = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \ldots
$$

where $(a_n)_{n\in\mathbb{Z}} \subset \mathbb{C}$. We define ρ_0 , $\rho_I \in [0, +\infty]$ the *outer* and *inner* radius of convergence as

$$
\rho_0 := \left(\limsup_{n \to +\infty} |a_n|^{1/n}\right)^{-1}, \qquad \rho_I := \limsup_{n \to +\infty} |a_{-n}|^{1/n}.
$$

If $\rho_I < \rho_0$, we define the *annulus of convergence* as

$$
\mathcal{A}(z_0,\rho_I,\rho_0):=\{z\in\mathbb{C}:\rho_I<|z-z_0|<\rho_0\},\,
$$

with the convention $\mathcal{A}(z_0, \rho_I, +\infty) = \{z \in \mathbb{C} : \rho_I \langle z - z_0 \rangle\}$, so that in particular $\mathcal{A}(z_0, 0, +\infty) = \mathbb{C} \setminus \{z_0\}.$

(a) Show that if $\rho_0 > 0$, then the series

$$
f_0(z) := \sum_{n=0}^{+\infty} a_n (z - z_0)^n, \quad z \in \mathcal{D}_0(z_0, \rho_0) := \{ z \in \mathbb{C} : |z - z_0| < \rho_0 \},
$$

converges absolutely and uniformly on compact sets. Show that if $\rho_I < +\infty$, then the series

$$
f_I(z) := \sum_{n=1}^{+\infty} a_{-n}(z - z_0)^{-n}, \quad z \in \mathcal{D}_I(z_0, \rho_I) := \{ z \in \mathbb{C} : \rho_I < |z - z_0| \},
$$

converges absolutely and uniformly on compact sets.

Solution: In the case $\rho_0 > 0$, notice that f_0 and ρ_0 coincide with a Taylor expansion in z_0 and the radius of convergence of its associated power series. We know that the series defining f_0 converges absolutely and uniformly on compact subsets of $\mathcal{D}_0(z_0, \rho_0)$ (by Theorem 2.5 in the Lecture Notes). For the case $\rho_I < +\infty$, consider first the power series

$$
g_I(\zeta) = \sum_{n=1}^{+\infty} a_{-n} \zeta^n.
$$

Then, by the same argument as in the previous case, we know that *g^I* converges absolutely and uniformly on compact subset in $D(0, 1/\rho_I)$, the ball centered at 0 and of radius $(\limsup_{n\to+\infty}|a_{-n}|^{1/n})^{-1} = 1/\rho_I$. Consider the change of variable $\zeta = (z - z_0)^{-1}$. Now, the map $F(z) = (z - z_0)^{-1}$ sends $\mathcal{D}_I(z_0, \rho_I)$ to $D(0, 1/\rho_I) \setminus \{0\}$ continuously, and therefore it sends compact subsets of $\mathcal{D}_I(z_0, \rho_I)$ to compact subsets of $D(0, 1/\rho_I) \setminus \{0\}$. From the relation $f_I = g_I \circ F$ we deduce that f_I also converges uniformly on compact subsets in $\mathcal{D}_I(z_0, \rho_I)$ as wished.

(b) Show that a Laurent series is divergent for any *z* satisfying $|z - z_0| > \rho_0$ or $|z - z_0| < \rho_I$.

Solution: The argument is similar to point (a): if $|z - z_0| > \rho_0$ the series $f_0(z)$ diverges, again by Theorem 2.5 in the Lecture Notes. The same hold for $g_I(\zeta)$ when $|\zeta| = |z - z_0|^{-1} > 1/\rho_I$, and hence for $f_I(z)$ when $|z - z_0| < \rho_I$. Since $f = f_0 + f_I$ we conclude that $f(z)$ diverges if $|z - z_0| < \rho_I$ or $|z - z_0| > \rho_0$ as wished.

(c) Deduce that the full Laurent series

$$
f(z) := \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n
$$

defines an analytic function in $\mathcal{A}(z_0, \rho_I, \rho_0)$, and its coefficients are related to f by the formula

$$
a_n = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz,
$$

for any $n \in \mathbb{Z}$ and $r \in (\rho_I, \rho_0)$.

Solution: Since $f = f_I + f_0$ and f_I is analytic in $\mathcal{D}_I(z_0, \rho_I)$ and f_0 is analytic in $\mathcal{D}_0(z_0, \rho_0)$ by point (a), we deduce that *f* is analytic in $\mathcal{A}(z_0, \rho_I, \rho_0) = \mathcal{D}_I(z_0, \rho_0) \cap$ $\mathcal{D}_0(z_0, \rho_I)$. Let $r \in (\rho_I, \rho_0)$ and $\varepsilon > 0$ small enough so that $K = \mathcal{A}(z_0, r - \varepsilon, r + \varepsilon) \subset$ $\mathcal{A}(z_0, \rho_I, \rho_0)$. Since f converges absolutely an uniformly on the compact set K, we have that

$$
\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz = \sum_{k\in\mathbb{Z}} a_k \frac{1}{2\pi i} \int_{|z-z_0|=r} (z-z_0)^{k-(n+1)} dz = a_n,
$$

where we exchanged sum and integration by Fubini thanks to the uniform convergence of the series defining *f* in the compact set *K*.

9.3. Meromorphic functions Recall the definition of $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}.$

(a) Let $f: \mathbb{C} \to \hat{\mathbb{C}}$ be meromorphic. Show that f has at most countably many poles.

Solution: Since by definition the poles of a meromorphic function cannot have limit points, any compact subset of C contains at most finitely many poles. Since every open set Ω in $\mathbb C$ is a union of countably many compact sets (for instance, $\mathbb{C} = \bigcup_{n=1}^{+\infty} \{z \in \mathbb{C} : |z| \leq n\}$, it follows that the set of poles of f is at most countable.

(b) Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be meromorphic on $\hat{\mathbb{C}}$. Show that f has at most finitely many poles.

Solution: There exists $R > 0$ such that f is holomorphic for every $|z| > R$. Hence, the poles of f are contained in the compact set $\{|z| \leq R\}$ with the possible exception of ∞ . Again, since by definition there is no accumulation point, the number of poles must be finite.

(c) Deduce that if $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is meromorphic on $\hat{\mathbb{C}}$, than it is a rational function.

Solution: By point (b) we know that the zeros of f in $\mathbb C$ are finite, and we can therefore denote them $\{z_1, \ldots, z_N\}$ with respective order $\{n_1, \ldots, n_N\}$. For each $k \in \{1, \ldots, N\}$ we can express *f* in a neighbourhood of z_k as

$$
f(z) = \sum_{n=1}^{n_k} \frac{a_{-n}^k}{(z - z_k)^n} + \sum_{n=0}^{+\infty} a_n^k (z - z_k)^n = f_k(z) + g_k(z),
$$

for coefficients $(a_n^k)_{n \geq -n_k}$, where f_k is the principal part of f at z_k , and g_k is holomorphic in a neighbourhood of *zk*. Similarly,

$$
f(1/z) = f_{\infty}(z) + g_{\infty}(z),
$$

where g_{∞} is holomorphic in a neighbourhood of the origin, and f_{∞} is the principal part of $f(1/z)$ at zero. Define now $C(z) = f(z) - f_{\infty}(1/z) - \sum_{k=1}^{N} f_k(z)$. Notice that since we removed the principal parts of f at each z_k in the definition of $C(z)$, we deduce that $\{z_1, \ldots, z_N\}$ are removable singularities of $C(z)$. The same holds for the possible pole at ∞ since $C(1/z)$ is bounded in a neighbourhood of zero, and therefore *C*(*z*) is bounded in \mathbb{C} . Hence, by Liouville's Theorem, $C(z) \equiv c \in \mathbb{C}$ is constant, and therefore $f(z) = c + f_{\infty}(1/z) + \sum_{k=1}^{N} f_k(z)$ is rational, as claimed.

9.4. Generalization of the Argument Principle

(a) Let $\Omega \subset \mathbb{C}$ open, $z_0 \in \Omega$ and $r > 0$ such that $D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| \le$ $r \nbrace \subset \Omega$. Suppose that $f : \Omega \to \mathbb{C}$ is homolorphic and that $f(z) \neq 0$ on the circle $\partial D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| = r\}.$ Show that for any holomorphic function $\varphi : \Omega \to \mathbb{C}$ we have that

$$
\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f'}{f} \varphi dz = \sum_{w \in D(z_0,r): f(w)=0} (\text{ord}_w f) \varphi(w).
$$

Solution: Let *w* be a zero of *f* of order *n*. Then, there exists *g* holomorphic and non-vanishing such that $f(z) = (z - w)^n g(z)$. From

$$
\frac{f'(z)}{f(z)}\varphi(z) = \frac{n}{z-w}g(z)\varphi(z) + \frac{g'(z)}{g(z)}\varphi(z)
$$

we deduce that if $\varphi(w) = 0$, then *w* is not a zero of $f' \varphi/f$, and hence $\text{ord}_w(f' \varphi/f) =$ $0 = (\text{ord}_w f)\varphi(w)$. On the other side, if $\varphi(w) \neq 0$, then *w* is pole of order one of $f' \varphi / f$ with residue

$$
res_w(f'\varphi/f) = \lim_{z \to w} (ng(z)\varphi(z) + (z-w)g'(z)\varphi(z)/g(z)) = ng(w)\varphi(w) = (\text{ord}_w f)\varphi(w).
$$

We apply the Residue Theorem to conclude:

$$
\frac{1}{2\pi i}\int_{|z-z_0|=r}\frac{f'}{f}\varphi\,dz=\sum_{w\text{ pole in }|z-z_0|
$$

(b) Compute

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz
$$

Solution: The integral can be rewritten as:

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz = \int_{|z|=2} \frac{f'(z)}{f(z)} \cdot \varphi(z) dz,
$$

where:

$$
f(z) = z^2 + 1
$$
, $f'(z) = 2z$, and $\varphi(z) = \frac{e^{z^3 + 1}}{2}$.

The zeros of $f(z) = z^2 + 1$ are $w = i$ and $w = -i$, each with ord_{*w*} $f = 1$. We compute:

$$
\varphi(z) = \frac{e^{z^3 + 1}}{2}.
$$

5/[8](#page-7-0)

At $w = i$:

$$
\varphi(i) = \frac{e^{i^3 + 1}}{2} = \frac{e^{-i+1}}{2}.
$$

At $w = -i$:

$$
\varphi(-i) = \frac{e^{(-i)^3 + 1}}{2} = \frac{e^{i+1}}{2}.
$$

The formula gives:

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz = 2\pi i \cdot \sum_{w=i,-i} (\text{ord}_w f)\varphi(w).
$$

Substitute $\varphi(w)$ and ord_{*w*} $f = 1$:

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz = 2\pi i \cdot (\varphi(i) + \varphi(-i)).
$$

Substitute the values of $\varphi(i)$ and $\varphi(-i)$:

$$
\varphi(i) + \varphi(-i) = \frac{e^{-i+1}}{2} + \frac{e^{i+1}}{2}.
$$

Simplify:

$$
\varphi(i) + \varphi(-i) = \frac{1}{2} \left(e^{-i+1} + e^{i+1} \right).
$$

Using Euler's formula:

$$
e^{-i+1} = e \cdot (\cos(1) - i \sin(1)), \quad e^{i+1} = e \cdot (\cos(1) + i \sin(1)).
$$

Add:

$$
e^{-i+1} + e^{i+1} = 2e \cos(1).
$$

Thus:

$$
\varphi(i) + \varphi(-i) = \frac{1}{2} \cdot 2e \cos(1) = e \cos(1).
$$

The integral is:

$$
\int_{|z|=2} \frac{ze^{z^3+1}}{z^2+1} dz = 2\pi i \cdot e \cos(1).
$$

6/[8](#page-7-0)

9.5. Application of Rouché Theorem Let $f(z)$ be a holomorphic function inside the unit disk $|z|$ < 1, with the Taylor series expansion:

$$
f(z) = \sum_{n=0}^{\infty} c_n z^n.
$$

Suppose $f(z)$ is continuous on the closed unit disk and that it has exactly m zeros (counted with multiplicity) inside $|z| < 1$. Prove that:

$$
\min_{|z|=1} |f(z)| \le |c_0| + |c_1| + \cdots + |c_m|.
$$

Solution: Assume, towards a contradiction, that

$$
\min_{|z|=1} |f(z)| > |c_0| + |c_1| + \cdots + |c_m|.
$$

By continuity of $f(z)$, this inequality also holds on circles of radius $1 - \epsilon$ for all sufficiently small $\epsilon > 0$, i.e.,

$$
\min_{|z|=1-\epsilon} |f(z)| > |c_0| + |c_1| + \cdots + |c_m|.
$$

Consider the polynomial $p(z)$ of degree *m*, consisting of the first $m+1$ terms of the Taylor series of *f*(*z*):

$$
p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_m z^m.
$$

By assumption, $p(z)$ is not identically zero. If $p(z)$ were identically zero, then $f(z)$ would have at least $m+1$ zeros inside the open unit disk, contradicting the assumption that $f(z)$ has exactly *m* zeros.

Since $p(z)$ is a polynomial of degree *m*, it has at most *m* zeros. For $\epsilon > 0$ small enough, the open disk of radius $1 - \epsilon$ contains all the zeros of $p(z)$ that are within the open unit disk $|z|$ < 1.

By continuity and the assumption that $\min_{|z|=1} |f(z)| > |c_0| + |c_1| + \cdots + |c_m|$, it follows that

$$
|f(z)| > |c_0| + |c_1| + \cdots + |c_m| \ge |p(z)|,
$$

on $|z| = 1 - \epsilon$. Therefore, $|f(z)| > |p(z)|$ on the circle $|z| = 1 - \epsilon$.

We apply Rouché's theorem: if $|f(z)| > |p(z)|$ on $|z| = 1 - \epsilon$, then $f(z)$ and $f(z) - p(z)$ have the same number of zeros (counted with multiplicity) inside the disk $|z| < 1 - \epsilon$.

Since $f(z) - p(z)$ involves higher-order terms starting from $c_{m+1}z^{m+1}$, this implies that $f(z) - p(z)$ has at least $m + 1$ zeros. Thus, $f(z)$ must also have at least $m + 1$ zeros in $|z| < 1 - \epsilon$. However, this contradicts the assumption that $f(z)$ has exactly *m* zeros in $|z| < 1$.

The assumption that $\min_{|z|=1} |f(z)| > |c_0| + |c_1| + \cdots + |c_m|$ leads to a contradiction. Therefore, we conclude that

 $\min_{|z|=1} |f(z)| \leq |c_0| + |c_1| + \cdots + |c_m|.$