10.1. Multiple Choice

(a) Let *f* be a holomorphic function on the closed unit disk $\overline{D} = \{z \in \mathbb{C} : |z| < 1\}.$ Consider the relationship between the location of the minimum modulus of |*f*| and whether *f* has zeroes inside *D*. Which of the following statements is **true**?

- A) If *f* has zeroes inside *D*, then the minimum modulus of |*f*| is attained on the boundary *∂D*.
- B) If *f* has no zeroes inside *D*, then the minimum modulus of |*f*| is attained on the boundary *∂D*.
- C) If the minimum modulus of |*f*| is attained on the boundary *∂D*, then *f* has zeroes inside *D*.
- D) If the minimum modulus of |*f*| is attained on the boundary *∂D*, then *f* has no zeroes inside *D*.

Solution:

- **A** is false: If *f* has zeroes inside *D*, the minimum modulus $|f(z)|$ is zero, and this zero must occur in the interior of *D*, and not necessarily on *∂D*.
- **B is true:** If *f* has no zeroes inside *D*, then 1*/f* is holomorphic on *D*. By the Maximum Modulus Principle, the maximum modulus of |1*/f*| (and hence the minimum modulus of |*f*|) occurs on the boundary *∂D*.
- **C** is false: Take the constant function $f \equiv 1$.
- **D** is false: Clearly $f \equiv 0$ is a counterexample.
- **(b)** Which of the following sets is not simply connected?
- A) $\{z = x + iy \in \mathbb{C} \mid 0 < y < x^2 \text{ or } x = 0\}$
- B) $\mathbb{C} \setminus \{re^{i\theta} : r > 0, \theta = \pi/4\}$
- C) $\{z = x + iy \in \mathbb{C} \mid |x| < 1, |y| < 1\}$
- D) $\{z \in \mathbb{C} \mid |z| > 1\}$

Solution:

- A) This set includes the region bounded by the parabola $y = x^2$ above the *x*-axis, as well as the imaginary axis $(x = 0)$. The inclusion of $x = 0$ connects disjoint parts of the parabola-bounded region. The set is therefore connected, and there are no holes or obstructions that prevent loops from contracting to a point.
- B) This is just the cut plane \mathbb{C}^- rotated by $3\pi/4$ degrees, hence simply connected.
- C) This is the unit square which is convex hence simply connected.
- D) This is not simply connected. Since for the closed curve $\gamma : [0, 2\pi] \to \mathbb{C}$ with $\gamma(t) = 2e^{it}$

$$
\int_{\gamma} \frac{1}{z} = 2\pi i \neq 0.
$$

10.2. Laurent Series II Let $0 \le s_1 < r_1 < r_2 < s_2$, and set $U = \mathcal{A}(0, s_1, s_2)$ and $V = \mathcal{A}(0, r_1, r_2)$ (like in Exercise 9.1). Denote with γ_1 and γ_2 the circles of radius r_1 and r_2 , respectively, positively oriented. Let $f: U \to \mathbb{C}$ be a general holomorphic function.

(a) Show that the functions

$$
g_1(z) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w - z} dw, \text{ for } |z| > r_1,
$$

and

$$
g_2(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(w)}{w - z} \, dw, \quad \text{for } |z| < r_2,
$$

are well defined and holomorphic.

Solution: We prove this for g_1 via Morera's Theorem. The proof for g_2 is similar. First, notice that g_1 is continuous in $W = \{z : |z| > r_1\}$: fix $z_1 \in W$ distant $d > 0$ from γ_1 . Then, for every $z_2 \in W$ distant $\delta > 0$ from z_1 ($\delta < d/2$) we get

$$
|g_1(z_1) - g_1(z_2)| = \left| \frac{1}{2\pi i} \int_{\gamma_1} f(w) \left(\frac{1}{w - z_1} - \frac{1}{w - z_2} \right) dz \right|
$$

$$
\leq 2r_1 \max_{w \in \gamma_1} |f(w)| d^{-2} \delta.
$$

for any $\varepsilon > 0$ and $\delta = \delta(\varepsilon) > 0$ small enough. Now given $\varepsilon > 0$ choose $0 < \delta =$ $\delta(\varepsilon) < \min(d/2, \varepsilon d^2/2r_1 \max_{w \in \gamma_1} |f(w)|)$ to conclude the argument. Let now $T \subset W$ a generic triangle in *W*. Since $z \mapsto 1/(w - z)$ is holomorphic (and hence continuous) in *W*, by Fubini we check that

$$
\int_{T} g_1(z) dz = \frac{1}{2\pi i} \int_{T} \int_{\gamma_1} \frac{f(w)}{w - z} dw dz = \frac{1}{2\pi i} \int_{\gamma_1} f(w) \underbrace{\int_{T} \frac{1}{w - z} dz}_{=0 \text{ by Goursat}} dw = 0.
$$

Hence, g_1 is holomorphic in W by Morera's theorem.

 $2/7$ $2/7$

(b) Let γ be the closed curve obtained by going along γ_2 starting at r_2 , then along the segment joining r_2 to r_1 , then along $-\gamma_1$, and finally back via the segment joining *r*₁ to *r*₂. Let $z_0 \in V$ and $r > 0$ small enough such that $\sigma = \{z \in \mathbb{C} : |z - z_0| = r\}$ is in *V*. Explain why σ and γ are homotopic in *U*.

Solution: By 'inflating' σ , one can show that it is homotopic to a little sector of annulus. Then, by deforming this sector continuously in the interior of γ it is clear that by overlapping its two flat ends, one obtains the curve γ with the correct orientation. See figure below.

(c) Show that $f = g_2 - g_1$ in *V*.

Solution: By independence of Cauchy formula under homotopies, we get that

$$
f(z) = \int_{\sigma} \frac{f(w)}{w - z} dw = \int_{\gamma} \frac{f(w)}{w - z} dw
$$

=
$$
\int_{\gamma_2} \frac{f(w)}{w - z} dw - \int_{\gamma_1} \frac{f(w)}{w - z} dw + \int_{r_1}^{r_2} \frac{f(w)}{w - z} dw - \int_{r_1}^{r_2} \frac{f(w)}{w - z} dw = g_2(z) - g_1(z).
$$

 $3/7$ $3/7$

(d) Deduce that *f* can be represented as a Laurent serie, meaning: there exists a sequence $(a_n)_{n \in \mathbb{Z}}$ such that the series $\sum_{n \geq 1} a_n z^n$ and $\sum_{n \geq 1} a_{-n} z^{-n}$ are absolutely convergent in V , and satisfy

$$
f(z) = \sum_{n \in \mathbb{Z}} a_n z^n, \quad \text{in } V.
$$

Solution: By the previous point, it suffices to show that q_1 and q_2 can be represented as a Laurent series. Since g_2 is holomorphic in $\{|z| < r_2\}$ it admits a Taylor expansion (which is in particular a Laurent series) in the disk and $g_2(z) = \sum_{n\geq 0} a_n z^n$. For g_1 we can write

$$
g_1(z) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w - z} dw = -\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{z} \frac{1}{1 - w/z} dw
$$

= $-\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{z} \sum_{k \ge 0} \left(\frac{w}{z}\right)^k dw$
= $\sum_{n \le -1} \left(-\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w^{n+1}} dw\right) z^n = \sum_{n \le -1} a_n z^n$,

as wished, where we took advantage of Fubini's Theorem to interchange sum and integration.

10.3. Complex vs Real Is it true that if $u, v: \mathbb{C} \to \mathbb{R}$ are smooth and open maps, then $f = u + iv$ is open? Answer from the perspective of the Open Mapping Theorem.

Solution: No, in general this is false: just consider $u(x, y) = v(x, y) = x$ for instance. Both functions are open since they are projections on the real axis, but the images of $f = u + iv$ are never open because the real axis is not open in \mathbb{C} . We deduce that the Open Mapping Theorem is a property of holomoprhic functions which is ensured by the extra condition of Cauchy-Riemann equations.

10.4. Maps preserving orthogonality Let $\Omega \in \mathbb{R}^2$ open, and $f : \Omega \to \mathbb{R}^2$ smooth. Show that if f is orientation preserving $\frac{1}{f}$ $\frac{1}{f}$ $\frac{1}{f}$ and sends curves intersecting orthogonally to curves intersecting orthogonally, then f is holomorphic (by identifying \mathbb{R}^2 with \mathbb{C}).

Solution: By the Cauchy-Riemann equations, it is sufficient to prove that the Jacobian matrix of $f = u + iv$ is pointwise equal to

$$
Df(x,y) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}
$$

¹That is the determinant of its Jacobian is positive.

for some functions *a*, *b*. Now, since *f* sends curves that intersects orthogonally to curves that intersects orthogonally, we get in particular that

$$
Df(x,y) \cdot (1,0)t \perp Df(x,y) \cdot (0,1)t,
$$

that is $(A, C) \perp (B, D)$, implying that $(-C, A)$ is collinear to (B, D) , meaning that there exists $\kappa \in \mathbb{R}$ such that $-\kappa C = B$ and $\kappa A = D$. Also, since f preserves the orientation, $0 < \det(Df(x, y)) = \kappa A^2 + \kappa C^2$, implying that $\kappa > 0$. We are left to prove that $\kappa = 1$. Let now $(x, y) \in \mathbb{R}^2 \setminus \{0\}$, then from

$$
Df(x,y) \cdot (x,y)^{t} \perp Df(x,y) \cdot (-y,x)^{t} \quad \Leftrightarrow \quad (\kappa^{2} - 1)(A^{2} + C^{2})xy = 0,
$$

implying $\kappa = 1$, as wished.

10.5. Let *A* be a square centered at the origin. Denote by *s* **one** arbitrarily fixed side of *A*. Let $f: A \to \mathbb{C}$ be holomorphic on the interior of *A* and continuous on the boundary of *A*, such that $f(z) = 0$ for all $z \in s$. Prove that $f = 0$ on *A*.

Solution: Let $f_1(z) = f(z)$, $f_2(z) = f(iz)$, $f_3(z) = f(-z)$, and $f_4(z) = f(-iz)$. Then each side of *A* corresponds to one of the functions f_1, f_2, f_3 , or f_4 , and each of these functions vanishes on one of the sides of *A*.

Define $g(z) := f_1(z) f_2(z) f_3(z) f_4(z)$. By construction, $g(z)$ vanishes on the entire boundary of *A*. Since *g* is holomorphic on *A*, by the Maximum Modulus Principle, $q \equiv 0$ on *A*.

Thus, for all $z \in A$, at least one of the functions $f_1(z)$, $f_2(z)$, $f_3(z)$, $f_4(z)$ must be zero. Equivalently, $f(z)$ has a zero at one of the four points $\{\pm z, \pm iz\} \subset A$.

Now, consider a sequence $\{z_k\}$ in the interior of *A*, such that $z_k \to 0$. For each z_k , there exists a corresponding zero $w_k \in {\{\pm z_k, \pm iz_k\}}$ of f. Since $w_k \to 0$ as $z_k \to 0$, we obtain a sequence of zeros of *f* converging to 0.

By the Identity Theorem for holomorphic functions, $f \equiv 0$ on A.

10.6. Multiple Ways Let *f* be a holomorphic function on the closed unit disk $\overline{D} = \{z \in \mathbb{C} : |z| \leq 1\}.$ This exercise asks you to prove that

$$
\max_{|z|=1} \left| f(z) - \frac{e^z}{z} \right| \ge 1
$$

in **two** out of the three following ways:

(a) prove the claim using the Maximum Principle;

- **(b)** prove the claim using Rouché's Theorem;
- **(c)** prove the claim using Cauchy's Integral Formula.

Solution Using the Maximum Principle: Define the function $g(z) = z f(z) - e^z$, which is holomorphic on \overline{D} . Evaluating *g* at $z = 0$, we have:

$$
g(0) = 0 \cdot f(0) - e^0 = -1.
$$

By the Maximum Modulus Principle, the maximum of $|q(z)|$ on \overline{D} is attained on the boundary $\partial D = \{z \in \mathbb{C} : |z| = 1\}$. Therefore, there exists $z_0 \in \partial D$ such that:

$$
|g(z_0)| = \max_{|z| \le 1} |g(z)| \ge |g(0)| = 1.
$$

Since $|z_0| = 1$ for $z_0 \in \partial D$, we have:

$$
|g(z_0)| = |z_0 f(z_0) - e^{z_0}| = |z_0 (f(z_0) - \frac{e^{z_0}}{z_0})| = |f(z_0) - \frac{e^{z_0}}{z_0}|.
$$

Thus, it follows that:

$$
\max_{|z|=1} \left| f(z) - \frac{e^z}{z} \right| \ge 1.
$$

Solution Using Cauchy's Integral Formula: Define the function $g(z) = zf(z) - e^z$, which is holomorphic on \overline{D} . Evaluating *g* at $z = 0$, we have:

$$
g(0) = 0 \cdot f(0) - e^0 = -1.
$$

Applying Cauchy's integral formula for g at $z = 0$, we get:

$$
g(0) = \frac{1}{2\pi i} \int_{|z|=1} \frac{g(z)}{z} dz.
$$

Taking the modulus on both sides:

$$
|g(0)| = \left|\frac{1}{2\pi i} \int_{|z|=1} \frac{g(z)}{z} \, dz\right| \le \frac{1}{2\pi} \int_{|z|=1} \left|\frac{g(z)}{z}\right| |dz|.
$$

Since $|z| = 1$ on the contour $|z| = 1$, we have $|1/z| = 1$. Therefore:

$$
1 = |g(0)| \le \frac{1}{2\pi} \int_{|z|=1} |g(z)| \, |dz|.
$$

6/[7](#page-6-0)

This implies that the average value of $|g(z)|$ on the unit circle is at least 1. Consequently, there must exist some point z_0 on the unit circle $|z| = 1$ where $|g(z_0)| \geq 1$. Since $g(z) = zf(z) - e^z$ and $|z_0| = 1$, we have:

$$
|g(z_0)| = |z_0 f(z_0) - e^{z_0}| = \left| z_0 \left(f(z_0) - \frac{e^{z_0}}{z_0} \right) \right| = \left| f(z_0) - \frac{e^{z_0}}{z_0} \right|.
$$

Therefore:

$$
\max_{|z|=1} \left| f(z) - \frac{e^z}{z} \right| \ge 1.
$$

Solution Using Rouché's Theorem: Assume, for the sake of contradiction, that:

$$
\left| f(z) - \frac{e^z}{z} \right| < 1 \quad \text{for all } |z| = 1.
$$

Multiplying both sides by *z*, for $|z|=1$, we get:

$$
|zf(z) - e^z| < 1 \quad \text{for all } |z| = 1.
$$

Define $h(z) = z f(z) - e^z$. On the unit circle $|z| = 1$, we have $|h(z)| < 1$. Consider the function $h(z) + 1 = zf(z) - e^z + 1$. By Rouché's theorem, since $|h(z)| < |1|$ on $|z| = 1$, $h(z) + 1$ and 1 have the same number of zeros inside the unit disk *D*.

However, $h(z) + 1 = zf(z) - e^z + 1$ has a zero at $z = 0$ because:

$$
h(0) + 1 = 0 \cdot f(0) - e^{0} + 1 = -1 + 1 = 0.
$$

This implies that $h(z) + 1$ has at least one zero inside *D*, while the constant function 1 has no zeros. This contradiction arises from our assumption. Therefore, there must exist some point z_0 on the unit circle $|z|=1$ where:

$$
\left| f(z_0) - \frac{e^{z_0}}{z_0} \right| \ge 1.
$$

Thus, we conclude that:

$$
\max_{|z|=1} \left| f(z) - \frac{e^z}{z} \right| \ge 1.
$$