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10.1. Multiple Choice

(a) Let f be a holomorphic function on the closed unit disk D = {z ∈ C : |z| ≤ 1}.
Consider the relationship between the location of the minimum modulus of |f | and
whether f has zeroes inside D. Which of the following statements is true?

A) If f has zeroes inside D, then the minimum modulus of |f | is attained on the
boundary ∂D.

B) If f has no zeroes inside D, then the minimum modulus of |f | is attained on the
boundary ∂D.

C) If the minimum modulus of |f | is attained on the boundary ∂D, then f has
zeroes inside D.

D) If the minimum modulus of |f | is attained on the boundary ∂D, then f has no
zeroes inside D.

Solution:

• A is false: If f has zeroes inside D, the minimum modulus |f(z)| is zero, and
this zero must occur in the interior of D, and not necessarily on ∂D.

• B is true: If f has no zeroes inside D, then 1/f is holomorphic on D. By the
Maximum Modulus Principle, the maximum modulus of |1/f | (and hence the
minimum modulus of |f |) occurs on the boundary ∂D.

• C is false: Take the constant function f ≡ 1.

• D is false: Clearly f ≡ 0 is a counterexample.

(b) Which of the following sets is not simply connected?

A) {z = x + iy ∈ C | 0 < y < x2 or x = 0}

B) C \ {reiθ : r > 0, θ = π/4}

C) {z = x + iy ∈ C | |x| < 1, |y| < 1}

D) {z ∈ C | |z| > 1}

Solution:

A) This set includes the region bounded by the parabola y = x2 above the x-axis,
as well as the imaginary axis (x = 0). The inclusion of x = 0 connects disjoint
parts of the parabola-bounded region. The set is therefore connected, and there
are no holes or obstructions that prevent loops from contracting to a point.

B) This is just the cut plane C− rotated by 3π/4 degrees, hence simply connected.
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C) This is the unit square which is convex hence simply connected.

D) This is not simply connected. Since for the closed curve γ : [0, 2π] → C with
γ(t) = 2eit,∫

γ

1
z

= 2πi ̸= 0.

10.2. Laurent Series II Let 0 ≤ s1 < r1 < r2 < s2, and set U = A(0, s1, s2) and
V = A(0, r1, r2) (like in Exercise 9.1). Denote with γ1 and γ2 the circles of radius r1
and r2, respectively, positively oriented. Let f : U → C be a general holomorphic
function.

(a) Show that the functions

g1(z) = 1
2πi

∫
γ1

f(w)
w − z

dw, for |z| > r1,

and

g2(z) = 1
2πi

∫
γ2

f(w)
w − z

dw, for |z| < r2,

are well defined and holomorphic.

Solution: We prove this for g1 via Morera’s Theorem. The proof for g2 is similar.
First, notice that g1 is continuous in W = {z : |z| > r1}: fix z1 ∈ W distant d > 0
from γ1. Then, for every z2 ∈ W distant δ > 0 from z1 (δ < d/2) we get

|g1(z1) − g1(z2)| =
∣∣∣∣ 1
2πi

∫
γ1

f(w)
( 1

w − z1
− 1

w − z2

)
dz

∣∣∣∣
≤ 2r1 max

w∈γ1
|f(w)|d−2δ.

for any ε > 0 and δ = δ(ε) > 0 small enough. Now given ε > 0 choose 0 < δ =
δ(ε) < min(d/2, εd2/2r1 maxw∈γ1 |f(w)|) to conclude the argument. Let now T ⊂ W
a generic triangle in W . Since z 7→ 1/(w − z) is holomorphic (and hence continuous)
in W , by Fubini we check that

∫
T

g1(z) dz = 1
2πi

∫
T

∫
γ1

f(w)
w − z

dw dz = 1
2πi

∫
γ1

f(w)
∫

T

1
w − z

dz︸ ︷︷ ︸
=0 by Goursat

dw = 0.

Hence, g1 is holomorphic in W by Morera’s theorem.
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(b) Let γ be the closed curve obtained by going along γ2 starting at r2, then along
the segment joining r2 to r1, then along −γ1, and finally back via the segment joining
r1 to r2. Let z0 ∈ V and r > 0 small enough such that σ = {z ∈ C : |z − z0| = r} is
in V . Explain why σ and γ are homotopic in U .

Solution: By ’inflating’ σ, one can show that it is homotopic to a little sector
of annulus. Then, by deforming this sector continuously in the interior of γ it is
clear that by overlapping its two flat ends, one obtains the curve γ with the correct
orientation. See figure below.

z0

σ

γ

z0

γ

z0

γ

(c) Show that f = g2 − g1 in V .

Solution: By independence of Cauchy formula under homotopies, we get that

f(z) =
∫

σ

f(w)
w − z

dw =
∫

γ

f(w)
w − z

dw

=
∫

γ2

f(w)
w − z

dw −
∫

γ1

f(w)
w − z

dw +
∫ r2

r1

f(w)
w − z

dw −
∫ r2

r1

f(w)
w − z

dw = g2(z) − g1(z).
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(d) Deduce that f can be represented as a Laurent serie, meaning: there exists
a sequence (an)n∈Z such that the series ∑

n≥1 anzn and ∑
n≥1 a−nz−n are absolutely

convergent in V , and satisfy

f(z) =
∑
n∈Z

anzn, in V.

Solution: By the previous point, it suffices to show that g1 and g2 can be represented
as a Laurent series. Since g2 is holomorphic in {|z| < r2} it admits a Taylor expansion
(which is in particular a Laurent series) in the disk and g2(z) = ∑

n≥0 anzn. For g1 we
can write

g1(z) = 1
2πi

∫
γ1

f(w)
w − z

dw = − 1
2πi

∫
γ1

f(w)
z

1
1 − w/z

dw

= − 1
2πi

∫
γ1

f(w)
z

∑
k≥0

(
w

z

)k

dw

=
∑

n≤−1

(
− 1

2πi

∫
γ1

f(w)
wn+1 dw

)
zn =

∑
n≤−1

anzn,

as wished, where we took advantage of Fubini’s Theorem to interchange sum and
integration.

10.3. Complex vs Real Is it true that if u, v : C → R are smooth and open maps,
then f = u + iv is open? Answer from the perspective of the Open Mapping Theorem.

Solution: No, in general this is false: just consider u(x, y) = v(x, y) = x for instance.
Both functions are open since they are projections on the real axis, but the images of
f = u + iv are never open because the real axis is not open in C. We deduce that the
Open Mapping Theorem is a property of holomoprhic functions which is ensured by
the extra condition of Cauchy-Riemann equations.

10.4. Maps preserving orthogonality Let Ω ∈ R2 open, and f : Ω → R2 smooth.
Show that if f is orientation preserving 1 and sends curves intersecting orthogonally
to curves intersecting orthogonally, then f is holomorphic (by identifying R2 with C).

Solution: By the Cauchy-Riemann equations, it is sufficient to prove that the
Jacobian matrix of f = u + iv is pointwise equal to

Df(x, y) =
[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
A B
C D

]
=

[
a b

−b a

]
1That is the determinant of its Jacobian is positive.
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for some functions a, b. Now, since f sends curves that intersects orthogonally to
curves that intersects orthogonally, we get in particular that

Df(x, y) · (1, 0)t ⊥ Df(x, y) · (0, 1)t,

that is (A, C) ⊥ (B, D), implying that (−C, A) is collinear to (B, D), meaning that
there exists κ ∈ R such that −κC = B and κA = D. Also, since f preserves the
orientation, 0 < det(Df(x, y)) = κA2 + κC2, implying that κ > 0. We are left to
prove that κ = 1. Let now (x, y) ∈ R2 \ {0}, then from

Df(x, y) · (x, y)t ⊥ Df(x, y) · (−y, x)t ⇔ (κ2 − 1)(A2 + C2)xy = 0,

implying κ = 1, as wished.

10.5. Let A be a square centered at the origin. Denote by s one arbitrarily fixed
side of A. Let f : A → C be holomorphic on the interior of A and continuous on the
boundary of A, such that f(z) = 0 for all z ∈ s. Prove that f = 0 on A.

Solution: Let f1(z) = f(z), f2(z) = f(iz), f3(z) = f(−z), and f4(z) = f(−iz).
Then each side of A corresponds to one of the functions f1, f2, f3, or f4, and each of
these functions vanishes on one of the sides of A.

Define g(z) := f1(z)f2(z)f3(z)f4(z). By construction, g(z) vanishes on the entire
boundary of A. Since g is holomorphic on A, by the Maximum Modulus Principle,
g ≡ 0 on A.

Thus, for all z ∈ A, at least one of the functions f1(z), f2(z), f3(z), f4(z) must be zero.
Equivalently, f(z) has a zero at one of the four points {±z, ±iz} ⊂ A.

Now, consider a sequence {zk} in the interior of A, such that zk → 0. For each zk,
there exists a corresponding zero wk ∈ {±zk, ±izk} of f . Since wk → 0 as zk → 0, we
obtain a sequence of zeros of f converging to 0.

By the Identity Theorem for holomorphic functions, f ≡ 0 on A.

10.6. Multiple Ways Let f be a holomorphic function on the closed unit disk
D = {z ∈ C : |z| ≤ 1}. This exercise asks you to prove that

max
|z|=1

∣∣∣∣f(z) − ez

z

∣∣∣∣ ≥ 1

in two out of the three following ways:

(a) prove the claim using the Maximum Principle;
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(b) prove the claim using Rouché’s Theorem;

(c) prove the claim using Cauchy’s Integral Formula.

Solution Using the Maximum Principle: Define the function g(z) = zf(z) − ez,
which is holomorphic on D. Evaluating g at z = 0, we have:

g(0) = 0 · f(0) − e0 = −1.

By the Maximum Modulus Principle, the maximum of |g(z)| on D is attained on the
boundary ∂D = {z ∈ C : |z| = 1}. Therefore, there exists z0 ∈ ∂D such that:

|g(z0)| = max
|z|≤1

|g(z)| ≥ |g(0)| = 1.

Since |z0| = 1 for z0 ∈ ∂D, we have:

|g(z0)| = |z0f(z0) − ez0 | =
∣∣∣∣z0

(
f(z0) − ez0

z0

)∣∣∣∣ =
∣∣∣∣f(z0) − ez0

z0

∣∣∣∣ .

Thus, it follows that:
max
|z|=1

∣∣∣∣f(z) − ez

z

∣∣∣∣ ≥ 1.

Solution Using Cauchy’s Integral Formula: Define the function g(z) = zf(z)−ez,
which is holomorphic on D. Evaluating g at z = 0, we have:

g(0) = 0 · f(0) − e0 = −1.

Applying Cauchy’s integral formula for g at z = 0, we get:

g(0) = 1
2πi

∫
|z|=1

g(z)
z

dz.

Taking the modulus on both sides:

|g(0)| =
∣∣∣∣∣ 1
2πi

∫
|z|=1

g(z)
z

dz

∣∣∣∣∣ ≤ 1
2π

∫
|z|=1

∣∣∣∣∣g(z)
z

∣∣∣∣∣ |dz|.

Since |z| = 1 on the contour |z| = 1, we have |1/z| = 1. Therefore:

1 = |g(0)| ≤ 1
2π

∫
|z|=1

|g(z)| |dz|.
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This implies that the average value of |g(z)| on the unit circle is at least 1. Conse-
quently, there must exist some point z0 on the unit circle |z| = 1 where |g(z0)| ≥ 1.
Since g(z) = zf(z) − ez and |z0| = 1, we have:

|g(z0)| = |z0f(z0) − ez0| =
∣∣∣∣z0

(
f(z0) − ez0

z0

)∣∣∣∣ =
∣∣∣∣f(z0) − ez0

z0

∣∣∣∣ .

Therefore:
max
|z|=1

∣∣∣∣f(z) − ez

z

∣∣∣∣ ≥ 1.

Solution Using Rouché’s Theorem: Assume, for the sake of contradiction, that:∣∣∣∣f(z) − ez

z

∣∣∣∣ < 1 for all |z| = 1.

Multiplying both sides by z, for |z| = 1, we get:

|zf(z) − ez| < 1 for all |z| = 1.

Define h(z) = zf(z) − ez. On the unit circle |z| = 1, we have |h(z)| < 1. Consider
the function h(z) + 1 = zf(z) − ez + 1. By Rouché’s theorem, since |h(z)| < |1| on
|z| = 1, h(z) + 1 and 1 have the same number of zeros inside the unit disk D.

However, h(z) + 1 = zf(z) − ez + 1 has a zero at z = 0 because:

h(0) + 1 = 0 · f(0) − e0 + 1 = −1 + 1 = 0.

This implies that h(z) + 1 has at least one zero inside D, while the constant function
1 has no zeros. This contradiction arises from our assumption. Therefore, there must
exist some point z0 on the unit circle |z| = 1 where:∣∣∣∣f(z0) − ez0

z0

∣∣∣∣ ≥ 1.

Thus, we conclude that:
max
|z|=1

∣∣∣∣f(z) − ez

z

∣∣∣∣ ≥ 1.
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