12.1. MC Questions

(a) Let log be the principal branch of the logarithm, and γ the positively oriented arc $\{e^{it}: t \in [0, \pi/2]\}$. What is the value of

$$\int_{\gamma} \log(z^2) dz?$$
A) 2i
B) $\pi - 2 + 2i$
C) $\pi + 2 - i$
D) $2 - 2i - \pi$

Solution: We compute:

$$\int_{\gamma} \log(z^2) \, dz = \int_0^{\pi/2} \log(e^{2it}) i e^{it} \, dt.$$

Since $\log(e^{2it}) = 2it$, this becomes:

$$\int_0^{\pi/2} 2it \cdot ie^{it} \, dt = -\int_0^{\pi/2} 2t e^{it} \, dt.$$

Using integration by parts, let u = 2t and $dv = e^{it}dt$, so du = 2dt and $v = \frac{e^{it}}{i}$. Then:

$$\int 2t e^{it} dt = \left[\frac{2t e^{it}}{i}\right]_0^{\pi/2} - \int_0^{\pi/2} \frac{2e^{it}}{i} dt.$$

The first term evaluates to:

$$\left[\frac{2te^{it}}{i}\right]_{0}^{\pi/2} = \frac{2 \cdot \frac{\pi}{2}e^{i\pi/2}}{i} - \frac{2 \cdot 0 \cdot e^{i \cdot 0}}{i} = \frac{\pi i}{i} = -\pi.$$

The second term evaluates as:

$$-\int_0^{\pi/2} \frac{2e^{it}}{i} dt = -\frac{2}{i} \int_0^{\pi/2} e^{it} dt = -\frac{2}{i} \left[\frac{e^{it}}{i} \right]_0^{\pi/2}.$$

Substituting the bounds:

$$-\frac{2}{i} \left[\frac{e^{it}}{i} \right]_{0}^{\pi/2} = -\frac{2}{i} \left(\frac{e^{i\pi/2} - e^{i \cdot 0}}{i} \right) = -\frac{2}{i} \left(\frac{i-1}{i} \right) = 2(1-i).$$

Combining both terms:

$$\int_{\gamma} \log(z^2) dz = -\pi + 2(1-i) = 2 - 2i - \pi.$$

 $1/_{5}$

ETH Zürich	Complex Analysis	D-MATH
HS 2024	Solutions 12	Prof. Dr. Ö. Imamoglu

(b) Suppose f is a conformal map from a simply connected region $\Omega \subset \mathbb{C}$ to the unit disc \mathbb{D} , and $f(z_0) = 0$. What condition determines the uniqueness of f?

A) f has a constant second derivative.

B) $f'(z_0) > 0.$

- C) f extends to a continuous bijection on $\partial \Omega$.
- D) f maps all boundary points of Ω to distinct points on $\partial \mathbb{D}$.

Solution: The Riemann mapping theorem states that if Ω is a proper, simply connected region in \mathbb{C} and $z_0 \in \Omega$, then there exists a unique conformal map $f : \Omega \to \mathbb{D}$ such that:

 $f(z_0) = 0$ and $f'(z_0) > 0$.

The condition $f'(z_0) > 0$ ensures the uniqueness of the mapping because it fixes both the location and orientation of the map at z_0 .

Note all the other conditions will hold for any two distinct automorphisms $f, g : \mathbb{D} \to \mathbb{D}$ of \mathbb{D} , which are rotations $f(z) = e^{i\theta}z$, $g(z) = e^{i\alpha}z$ with $\theta \neq \alpha$

12.2. Holomorphic injections Let $f : \mathbb{C} \to \mathbb{C}$ be an holomorphic injection.

(a) Let $g : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be defined as g(z) := f(1/z). Show that g has no essential singularity at zero. Argue by contradiction taking advantage of the Theorem of Casorati-Weierstrass¹.

Solution: Supposing by contradiction that g has an essential singularity in zero, by the Casorati-Weierstrass Theorem

 $D := g(B(0,1) \setminus \{0\}) = f(\mathbb{C} \setminus \overline{B}(0,1)),$

is dense in \mathbb{C} . Since f is injective, the set O := f(B(0, 1)) does not intersect D. By the Open Mapping Theorem O is open being image of an open set, and in particular there exists a non-empty open ball $B \subset O$, and hence $B \cap D = \emptyset$. This contradicts the density of D in \mathbb{C} , proving that g has no essential singularity in zero.

¹Recall: If $f : B(a, R) \setminus \{a\} \to \mathbb{C}$ holomorphic has an essential singularity in a, then for all 0 < r < R, $f(B(a, r) \setminus \{a\})$ is dense in \mathbb{C} . (Here $B(w, \rho) := \{z \in \mathbb{C} : |z - w| < \rho\}$).

D-MATH	Complex Analysis	ETH Zürich
Prof. Dr. Ö. Imamoglu	Solutions 12	HS 2024

(b) Taking advantage of the Laurent series of f and g, prove that f is in fact a polynomial.

Solution: From the previous point, g has a pole or a removable singularity in zero. Hence, we can apply Exercise 10.2, that ensures the existence of Laurent series for g and f of the form

$$g(z) = b_{-m}z^{-m} + \dots + b_{-1}z^{-1} + b_0 + \sum_{k=1}^{+\infty} b_k z^k,$$
$$f(z) = \sum_{k=0}^{+\infty} a_k z^k,$$

where $m \in \mathbb{N} \cup \{0\}$ is the order of the pole of g in zero, and (a_k) , (b_k) are suitable coefficients in \mathbb{C} . From the relation $g(z) = f(z^{-1})$ we deduce that $a_k = b_{-k}$ for all $k \in \mathbb{Z}$, proving that $a_k = 0$ for all k > m, and hence that f is equal to the polynomial expression $f(z) = a_0 + \cdots + a_m z^m$.

(c) Show that f is in the form f(z) = az + b for some $a, b \in \mathbb{C}$.

Solution: Since f has to be injective, m = 1. Otherwise, there exist numbers $w \in \mathbb{C}$ such that f(z) = w has exactly $m \ge 2$ solutions, which is a contradiction. We infer that $f(z) = a_0 + a_1 z$, as wanted.

12.3. Estimates on the modulus Suppose that f is holomorphic on the upper half plane $\mathbb{H} := \{z \in \mathbb{C} : \Im(z) > 0\}, f(i) = 0$, and that $|f(z)| \le 1$ for all $z \in \mathbb{H}$. How big can |f(2i)| be under these conditions?

Solution: The map

$$\varphi(z) := i \frac{1+z}{1-z}, \quad z \in \mathbb{D},$$

sends the unit disc \mathbb{D} to the half plane \mathbb{H} . Therefore, the map $f \circ \varphi$ sends the unit disc to itself, fixing zero. Now, $\varphi(w) = 2i \Rightarrow w = 1/3$, and hence, from the Schwarz Lemma (|w| < 1) one has that

$$|f(2i)|=|f\circ\varphi(w)|\leq |w|=\frac{1}{3},$$

proving that $|f(2i)| \leq 1/3$. Taking $f = \varphi^{-1}$, one can check that in fact this estimate is sharp.

3/5

12.4. Schwarz-Pick's Lemma Denote with $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ the unit open disk in \mathbb{C} , and suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic. Prove that for all $z \in \mathbb{D}$

$$\frac{|f'(z)|}{1-|f(z)|^2} \le \frac{1}{1-|z|^2}.$$

Remark: note that the above expression takes the nicer form: $|f'(a)| \leq \frac{1-|b|^2}{1-|a|^2}$, for all $a, b \in \mathbb{D}$ such that f(a) = b.

Solution: For every $\alpha \in \mathbb{C}$ define the map

$$\psi_{\alpha}(z) := \frac{z - \alpha}{1 - \bar{\alpha} z}.$$

This map is an automorphism of the disk \mathbb{D} , verifying the identity $\psi_{\alpha}(\alpha) = 0$ for all $\alpha \in \mathbb{C}$. Let $w \in \mathbb{C}$. The map

$$\psi_{f(w)} \circ f \circ \psi_w^{-1}$$

maps 0 to 0, and therefore, by the Schwarz Lemma, for all $z \in \mathbb{D}$ it holds

$$|\psi_{f(w)} \circ f \circ \psi_w^{-1}(z)| \le |z|.$$

Setting $\tilde{z} = \psi_w(z)$ we get that

$$\left|\frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)}\right| = |\psi_{f(w)} \circ f(z)| = |\psi_{f(w)} \circ f \circ \psi_w^{-1}(\tilde{z})| \le |\tilde{z}| = |\psi_w(z)| = \left|\frac{z - w}{1 - \bar{w}z}\right|.$$

We can rearrange this inequality as

$$\left|\frac{f(z) - f(w)}{z - w}\right| \left|\frac{1}{1 - \overline{f(w)}f(z)}\right| \le \frac{1}{1 - \overline{w}z},$$

Letting now $w \to z$, we deduce that the above expression converges to

$$|f'(z)| \left| \frac{1}{1 - |f(z)^2|} \right| = \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2},$$

where the first identity holds since $f(z) \in \mathbb{D}$ and hence |f(z)| < 1.

12.5. Symmetries of the Riemann mapping Let $\Omega \subset \mathbb{C}$ be a non-empty, simply connected domain symmetric with respect to the real axis $(\{\bar{z} : z \in \Omega\} = \Omega)$. For $z_0 \in \Omega$ real, denote with $F : \Omega \to \mathbb{D}$ the unique conformal map given by the Riemann Mapping Theorem, so that $F(z_0) = 0$ and $F'(z_0) > 0$. Prove that

$$\overline{F(\bar{z})} = F(z),$$

4/5

for all $z \in \Omega$.

Hint: take advantage of Exercise 7.2. on the Schwarz reflection principle.

Solution: Thanks to the proof in Exercise 7.2, and the symmetry of Ω and \mathbb{D} with respect to the real axis, the function $g(z) := \overline{F}(\overline{z})$ is holomorphic in Ω and has image in \mathbb{D} . We are left to show that F = g. We check that g is biolomorphic: in fact $g^{-1}(w) = \overline{F^{-1}(\overline{w})}$ since

$$g(z) = w \Leftrightarrow \overline{F(\bar{z})} = w \Leftrightarrow F(\bar{z}) = \bar{w} \Leftrightarrow \bar{z} = F^{-1}(\bar{w}) \Leftrightarrow z = \overline{F^{-1}(\bar{w})},$$

and since F^{-1} is holomorphic, it follows again by the proof of Exercise 7.2 that g^{-1} is also holomorphic. Now,

$$g(z_0) = \overline{F(\bar{z}_0)} = \overline{F(z_0)} = \bar{0} = 0 = F(z_0),$$

and

$$g'(z_0) = \lim_{h \to 0} \frac{\overline{F(\overline{z_0 + h})} - \overline{F(\overline{z_0})}}{h} = \overline{\left(\lim_{h \to 0} \frac{F(z_0 + \overline{h}) - F(z_0)}{h}\right)} = \left(\lim_{h \to 0} \frac{F(z_0 + \overline{h}) - F(z_0)}{\overline{h}}\right) = F'(z_0) > 0.$$

By uniqueness of the Riemann Mapping Theorem, we deduce that F = g, as wished.