1.1. MC Questions

(a) Let $f(z) = z^2$. How does f map the upper half-plane (the set of complex numbers with positive imaginary parts)?

- A) It maps the upper half-plane to the left half-plane.
- B) It maps the upper half-plane to the lower half-plane.
- C) It maps the upper half-plane to both the upper and lower half-planes.
- D) It maps the upper half-plane to the entire complex plane except the real axis.

Solution: The correct answer is C. A complex number in the form $r(\cos \theta + i \sin \theta)$ is mapped to $r^2(\cos 2\theta + i \sin 2\theta)$, from which we deduce that $f(z)$ is in the uppper half-plane if $0 < \theta < \frac{\pi}{2}$, $f(z)$ lies on the real line if $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}$ and $f(z)$ is in the lower half-plane if $\frac{\pi}{2} < \theta < \pi$.

(b) Let $f(z) = u + iv$ be a holomorphic function in the unit disc $D_1(0)$. Let $F_1(z) := \overline{f(\bar{z})}$ and $F_2(z) := f(\bar{z})$. Which one of the following statemnets is correct.

- A) F_1 is holomorphic but F_2 is not.
- B) F_2 is holomorphic but F_1 is not.
- C) Both F_1 and F_2 are holomorphic.
- D) Neither *F*¹ nor *F*² is holomorphic.

Solution: We know that F_2 can't be in general holomorphic as it's not holomorphic in the case in which *f* is the identity $f = Id$. Next, to show that $F_1(z)$ is holomorphic, we need to show that it satisfies the Cauchy-Riemann equations, as differentiability follows from the fact that *f* was differentiable. Let $F_1(z) = U(x, y) + iV(x, y)$. Then $U(x, y) = u(x, -y)$ and $V(x, y) = -v(x, -y)$. Computing the partial derivatives,

$$
\frac{\partial U}{\partial x} = \frac{\partial u}{\partial x}(x, -y)
$$
 and $\frac{\partial V}{\partial y} = \frac{\partial v}{\partial y}(x, -y)$.

Using the fact that *f* satisfies by assumption the CR equations, we get

$$
\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \quad \text{and} \quad \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x},
$$

which is what we wanted to prove.

1.2. Complex Numbers Review

September 20, 2024 $1/7$ $1/7$

(a) Simplify the following expressions

\n- \n
$$
\left(1 + i\sqrt{3}\right)^{50}
$$
\n
\n- \n
$$
\left(1 + i\right)^{2n} (1 - i)^{2m}
$$
\n for every $m, n \in \mathbb{N}$.\n
\n

Solution:

• We express the number in its polar form and compute directly:

$$
(1 + i\sqrt{3})^{50} = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))^{50} = 2^{50}(\cos(\frac{\pi \cdot 50}{3}) + i\sin(\frac{\pi \cdot 50}{3})) = 2^{50}(-\frac{1}{2} + i\frac{\sqrt{3}}{2})
$$

• Since
$$
(1 + i)^2 = 2i
$$
 and $(1 - i)^2 = -2i$ we have that

$$
(1+i)^{2n}(1-i)^{2m} = 2^{m+n}(i)^n(-i)^m = 2^{m+n}(i)^n \left(\frac{1}{i}\right)^m
$$

=
$$
2^{m+n}(i)^{m-n} = \begin{cases} 2^{m+n}, & \text{if } m-n = 0 \text{ mod } 4, \\ 2^{m+n}i, & \text{if } m-n = 1 \text{ mod } 4, \\ -2^{m+n}, & \text{if } m-n = 2 \text{ mod } 4, \\ -2^{m+n}i, & \text{if } m-n = 3 \text{ mod } 4. \end{cases}
$$

(b) Express the complex number $z = -1 + i$ √ 3 in polar form and compute all of its cubic roots.

Solution: We use the fact that given a number $z = r(\cos \theta + i \sin \theta)$, its *n*-th roots are given by $r^{\frac{1}{n}}(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n})$, for $k \in \{0, \ldots, n-1\}$. It follows that the cubic roots are:

$$
z_0 = \sqrt[3]{2} \left(\cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9} \right),
$$

\n
$$
z_1 = \sqrt[3]{2} \left(\cos \left(\frac{8\pi}{9} \right) + i \sin \left(\frac{8\pi}{9} \right) \right),
$$

\n
$$
z_2 = \sqrt[3]{2} \left(\cos \left(\frac{14\pi}{9} \right) + i \sin \left(\frac{14\pi}{9} \right) \right).
$$

(c) Find all $z \in \mathbb{C}$ such that $z^2 + (3 + 4i)z + (5 + 6i) = 0$.

Solution: Applying the standard formula for the roots of a polynomial of degree 2 yields that the solutions of the equations are

$$
z_{1,2} = \frac{-(3+4i) \pm 3\sqrt{3}i}{2},
$$

which gives $z_1 = -\frac{3}{2} + (-2 + \frac{3\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$)*i* and $z_2 = -\frac{3}{2} + (-2 - \frac{3\sqrt{3}}{2})$ $\frac{\sqrt{3}}{2}$)*i*.

2/[7](#page-6-0) September 20, 2024

1.3. Power Series Investigate the absolute convergence and radius of convergence of the following power series

$$
\sum_{n=0}^{+\infty} \frac{(-1)^n}{3^n} z^n, \qquad \sum_{n=0}^{+\infty} \frac{n!}{(2n)!} z^n, \qquad \sum_{n=0}^{+\infty} n^2 z^n.
$$

Solution: Let (a_n) be a sequence of complex numbers. We recall that if we set

$$
R = \begin{cases} \frac{1}{\limsup_{n \to +\infty} |a_n|^{1/n}}, & \text{if } \limsup_{n \to +\infty} |a_n|^{1/n} > 0, \\ +\infty, & \text{otherwise}, \end{cases}
$$

then the associated complex power serie $\sum_{n=0}^{+\infty} a_n z^n$ converges absolutely if $|z| < R$ and diverges if $|z| > R$. Since

$$
\limsup_{n \to +\infty} \left| \frac{(-1)^n}{3^n} \right|^{1/n} = \lim_{n \to +\infty} \frac{1}{(3^n)^{1/n}} = \frac{1}{3},
$$

we have that the first power serie of the exercise is absolutely convergent if $|z| < 3$. Since

$$
\limsup_{n \to +\infty} \left| \frac{n!}{(2n)!} \right|^{1/n} = \lim_{n \to +\infty} \left(\frac{n!}{(2n)!} \right)^{1/n} \le \lim_{n \to +\infty} \left(\frac{1}{n!} \right)^{1/n} = 0,
$$

we have that the second power serie of the exercise is absolutely convergent if $|z| < +\infty$. Since

$$
\limsup_{n \to +\infty} |n^2|^{1/n} = \lim_{n \to +\infty} (n^2)^{1/n} = 1,
$$

we have that the third power serie of the exercise is absolutely convergent if $|z| < 1$.

1.4. Differentiability, Cauchy-Riemann and Holomorphicity Provide, with proof:

(a) some function $f: \mathbb{C} \to \mathbb{C}$ such that, for some $z_0 \in \mathbb{C}$, f satisfies the Cauchy-Riemann equations at z_0 , but is *not* holomoprhic at z_0 ;

Solution: Define $f(x+iy) = \sqrt{|x| \cdot |y|}$. In this case, setting $f = u + iv$ we have that $u(z) = u(x + iy) = \sqrt{|x||y|}$ and $v \equiv 0$. By the very definition of partial derivative, we get that

$$
\frac{\partial u}{\partial x}(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = 0,
$$

September 20, 2024 $3/7$ $3/7$

and similarly $\frac{\partial u}{\partial y}(0,0) = 0$. So the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
$$

are clearly satisfied in $z = 0$. However, f is not holomorphic at the origin, since choosing for instance the particular complex increment of differentiation $H = 1 + i$, we get that

$$
\lim_{\substack{\tau \to 0 \\ \tau > 0}} \frac{f(\tau H) - f(0)}{\tau H} = \lim_{\substack{\tau \to 0 \\ \tau > 0}} \frac{1}{\tau} \frac{\tau}{1 + i} = \frac{1}{1 + i} \neq 0,
$$

On the other hand if we choose $H = 2 + i$ than a similar argument gives that the above limit is $\frac{\sqrt{2}}{2+i}$ Hence the limit of the differential quotient $(f(h) - f(0))/h$ depends on how $h \in \mathbb{C}$ approaches zero.

(b) functions $u, v \colon \mathbb{R}^2 \to \mathbb{R}$ such that, for some $p_0 = (x_0, y_0) \in \mathbb{R}^2$, the function $(u, v): (x, y) \mapsto (u(x, y), v(x, y))$ is differentiable at p_0 , but the function $u + iv: \mathbb{C} \to \mathbb{C}$ defined for $z = x + iy$ by $(u + iv)(z) = (u + iv)(x + iy) = u(x, y) + i \cdot v(x, y)$ is not holomorphic at $z_0 = x_0 + iy_0$.

Solution: Consider $u(x, y) = v(x, y) = x + y$. Then the function $(u, v) : (x, y) \mapsto$ $(u(x, y), v(x, y))$ is differentiable at every point in \mathbb{R}^2 . On the other hand, the equation $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ is clearly not satisfied.

1.5. Applications of CR equations Let $\Omega \subset \mathbb{C}$ be a domain, i.e an open connected subset of C.

(a) Let $u : \Omega \to \mathbb{R}$ be a differentiable function such that $\frac{\partial u}{\partial x}(z) = \frac{\partial u}{\partial y}(z) = 0$ for all $z \in \Omega$. Prove that *u* is constant on Ω

Solution: Fix $z \in \Omega$ and let $w \in \Omega$ so that the segment $\gamma(t) = (1-t)z + tw, t \in [0, 1]$, is contained if Ω . Define the function $q : [0, 1] \to \mathbb{R}$ by $q(t) := u(\gamma(t))$. Since *u* and γ are differentiable, we have that $g \in C^1(0,1)$, with derivative

$$
g'(t) = \nabla u(\gamma(t)) \cdot \gamma'(t),
$$

where $\nabla u(\gamma(t)) = \left(\frac{\partial u}{\partial x}(\gamma(t)), \frac{\partial u}{\partial y}(\gamma(t))\right)$ and $\gamma'(t) = w - z$. By assumption, $\nabla u \equiv 0$ everywhere, hence $g' \equiv 0$, implying $u(w) = g(1) = g(0) = u(z)$. Suppose now $w \in \Omega$ is arbitrary. Since the domain Ω is open and connected there exists a finite sequence of points w_0, w_1, \ldots, w_N in Ω so that $w_0 = z$, $w_N = w$ and for every $j = 0, \ldots, N - 1$ the segment joining w_j to w_{j+1} is contained in Ω . Repeating the previous argument on each segment, we obtain that $u(z) = u(w_0) = u(w_1) = \cdots = u(w_{N-1}) = u(w_N) = u(w)$ for all $w \in \Omega$, showing that *u* is indeed a constant function.

4/[7](#page-6-0) September 20, 2024

(b) Let $f: \Omega \to \mathbb{C}$ be holomorphic and $f'(z) = 0$ for all $z \in \Omega$. Prove that f is constant in $Ω$.

Solution: Since f is holomorphic in Ω , its real and imaginary parts are is particular differentiable in the sense of real analysis by looking at Ω as a subset of \mathbb{R}^2 . Moreover, since $0 = f'(z) = 2\frac{\partial u}{\partial z} = \left(\frac{\partial u}{\partial x} + \frac{1}{i}\right)$ *i* $\frac{\partial u}{\partial y}$ we have that $\nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}) \equiv 0$ in Ω . By point (a) we get that *u* must be constant in Ω . The same holds for *v* by noticing that $f'(z) = 2i\frac{\partial v}{\partial z}$. Hence, $f = u + iv$ is constant in Ω .

(c) If $f = u + iv$ is holomorphic on Ω and if any of the functions u, v or $|f|$ is constant on Ω then f is constant.

Solution: If v is constant, we get from the Cauchy-Riemann equations that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0$ implying by point (a) that u is also constant, and therefore *f* is constant. The same holds if *u* is constant by interchanging the roles of *u* and *v*. If $|f| =$ √ $u^2 + v^2$ is constant, then also $|f|^2$ must be constant. Hence, by applying the Cauchy-Riemann identities, we get that

$$
0 = \nabla |f|^2 = \left(2v\frac{\partial v}{\partial x} + 2u\frac{\partial u}{\partial x}, 2v\frac{\partial v}{\partial y} + 2u\frac{\partial u}{\partial y}\right) = \left(2v\frac{\partial v}{\partial x} + 2u\frac{\partial v}{\partial y}, 2v\frac{\partial v}{\partial y} - 2u\frac{\partial v}{\partial x}\right)
$$

implying that

$$
v\frac{\partial v}{\partial x} + u\frac{\partial v}{\partial y} = 0 = v\frac{\partial v}{\partial y} - u\frac{\partial v}{\partial x}.
$$
\n(1)

Now, multiplying the left hand side by *v* and the right hand side by *u* we get that the expression simplifies in

$$
(u^2 + v^2)\frac{\partial v}{\partial x} = 0.
$$

We have now two possibilities: if $u^2 + v^2$ vanishes somewhere, by the assumption $|f|$ = constant we get that $u = v = 0$ everywhere in Ω . Otherwise, from the above expression we deduce that $\frac{\partial v}{\partial x} = 0$ in Ω . The same argument proves that $\frac{\partial v}{\partial y} = 0$ by multiplying the left hand side of [\(1\)](#page-4-0) by *u* and the right hand side by $-v$. This proves by part (a) that *v* is constant and hence as above *f* is constant.

1.6. *⋆* **Geometric transformations of the complex plane**

(a) Describe the transformation $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by $f(z) = \frac{1}{z}$ in terms of geometric operations on the complex plane. Find the image of the unit circle under this transformation.

September 20, 2024 $5/7$ $5/7$

Solution: The transformation $g(r(\cos \theta + i \sin \theta)) = r^{-1}(\cos \theta + i \sin \theta)$ performs an inversion with respect to the unit circle. This means that points inside the unit circle are mapped to points outside the unit circle, and vice versa: if $|z| < 1$, then $|g(z)| > 1$, and if $|z| > 1$, then $|g(z)| < 1$. The given transformation *f* can be seen as composition of *q* with the reflection across the real axis. In formulae, the argument θ of the complex number $z = re^{i\theta}$ is changed to $-\theta$. Thus, the transformation $f(z) = \frac{1}{z}$ can be viewed as a combination of an inversion in the unit circle and a reflection across the real axis.

Notice that the reflection across the real axis leaves the modulus of a complex number unchanged. It follows from this, together with the property of *g* above, that the image of the unit circle through *f* has to be a subset of the unit circle. Being *f* an involution (that is, $f = f^{-1}$) we get that in particular f is invertible, hence the image of the unit circle is the whole unit circle.

(b) Let $f: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ be defined as $f(z) = \frac{z-i}{z+i}$. Show that this transformation maps the upper half-plane $\{z \in \mathbb{C} : \text{Im}(z) > 0\}$ to the unit disk $\{z \in \mathbb{C} : |w| < 1\}.$

Solution: For $w = f(z) = f(x + iy)$, the modulus of *w* is:

$$
|w| = \left| \frac{z - i}{z + i} \right| = \frac{|z - i|}{|z + i|} = \frac{\sqrt{x^2 + (y - 1)^2}}{\sqrt{x^2 + (y + 1)^2}}.
$$

For $z \in \mathbb{C}$ with $\text{Im}(z) = y > 0$, we see immediately that the denominator is larger than the numerator, from which the claims follows.

- **1.7.** \star Let $u : \mathbb{C} \to \mathbb{R}$ be a real-valued function on \mathbb{C} .
	- (a) Show that there is at most one holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that $\text{Re}(f) = u$ and $\text{Im}(f(0)) = 0$.

Solution: Suppose there are two holomorphic functions f_1 and f_2 such that:

$$
Re(f_1(z)) = Re(f_2(z)) = u(z) \text{ for all } z \in \mathbb{C}
$$

and

$$
\text{Im}(f_1(0)) = \text{Im}(f_2(0)) = 0.
$$

Define the difference $h(z) = f_1(z) - f_2(z)$. Then:

$$
Re(h(z)) = Re(f_1(z)) - Re(f_2(z)) = 0 \text{ for all } z \in \mathbb{C}.
$$

6/[7](#page-6-0) September 20, 2024

Since the sum of holomorphic functions is itself holomorphic, *h* is holomorphic and its real part is zero. But using Exercise 1.5 c, this gives that *h* is constant. This in return says that Im *h* is constant. Since $(\text{Im } h)(0) = \text{Im}(f_1)(0)$ − Im(f_2)(0) = 0 this constant is zero. This then implies that $h \equiv 0$, i.e. $f_1 = f_2$.

(b) Give an example of a C^{∞} function *u* such that there is no f as in the previous item.

Solution: Consider the function $u(z) = u(x + iy) = x^2$. Suppose there is such a holomorphic function $f(z) = u(z) + iv(z) = x^2 + iv(x, y)$. Since f is holomorphic, it must satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
$$

For $u(z) = x^2$, we compute the partial derivatives:

$$
\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 0.
$$

From the Cauchy-Riemann equations, we then obtain:

$$
\frac{\partial v}{\partial y} = 2x
$$
 and $\frac{\partial v}{\partial x} = 0$.

From $\frac{\partial v}{\partial x} = 0$, we conclude that $v(x, y)$ is independent of *x*, so we can write $v(x, y) = g(y)$ for some function *g* depending only on *y*.

Next, from $\frac{\partial v}{\partial y} = 2x$, we get:

 $g'(y) = 2x.$

However, this is a contradiction because the right-hand side 2*x* depends on *x*, whereas the left-hand side $g'(y)$ depends only on *y*. This shows that no such function $v(x, y)$ can exist.