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1.1. MC Questions

(a) Let f(z) = z2. How does f map the upper half-plane (the set of complex numbers
with positive imaginary parts)?

A) It maps the upper half-plane to the left half-plane.

B) It maps the upper half-plane to the lower half-plane.

C) It maps the upper half-plane to both the upper and lower half-planes.

D) It maps the upper half-plane to the entire complex plane except the real axis.

Solution: The correct answer is C. A complex number in the form r(cos θ + i sin θ)
is mapped to r2(cos 2θ + i sin 2θ), from which we deduce that f(z) is in the uppper
half-plane if 0 < θ < π

2 , f(z) lies on the real line if θ = π
2 and f(z) is in the lower

half-plane if π
2 < θ < π.

(b) Let f(z) = u + iv be a holomorphic function in the unit disc D1(0). Let
F1(z) := f(z̄) and F2(z) := f(z̄). Which one of the following statemnets is correct.

A) F1 is holomorphic but F2 is not.

B) F2 is holomorphic but F1 is not.

C) Both F1 and F2 are holomorphic.

D) Neither F1 nor F2 is holomorphic.

Solution: We know that F2 can’t be in general holomorphic as it’s not holomorphic
in the case in which f is the identity f = Id. Next, to show that F1(z) is holomorphic,
we need to show that it satisfies the Cauchy-Riemann equations, as differentiability
follows from the fact that f was differentiable. Let F1(z) = U(x, y) + iV (x, y). Then
U(x, y) = u(x, −y) and V (x, y) = −v(x, −y). Computing the partial derivatives,

∂U

∂x
= ∂u

∂x
(x, −y) and ∂V

∂y
= ∂v

∂y
(x, −y).

Using the fact that f satisfies by assumption the CR equations, we get

∂U

∂x
= ∂V

∂y
and ∂U

∂y
= −∂V

∂x
,

which is what we wanted to prove.

1.2. Complex Numbers Review
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(a) Simplify the following expressions

•
(
1 + i

√
3
)50

• (1 + i)2n(1 − i)2m for every m, n ∈ N.

Solution:

• We express the number in its polar form and compute directly:
(
1 + i

√
3
)50

= 2(cos(π

3 )+i sin(π

3 ))50 = 250(cos(π · 50
3 )+i sin(π · 50

3 )) = 250(−1
2+i

√
3

2 )

• Since (1 + i)2 = 2i and (1 − i)2 = −2i we have that

(1 + i)2n(1 − i)2m = 2m+n(i)n(−i)m = 2m+n(i)n
(1

i

)m

= 2m+n(i)m−n =


2m+n, if m − n = 0 mod 4,

2m+ni, if m − n = 1 mod 4,

−2m+n, if m − n = 2 mod 4,

−2m+ni, if m − n = 3 mod 4.

(b) Express the complex number z = −1 + i
√

3 in polar form and compute all of its
cubic roots.

Solution: We use the fact that given a number z = r(cos θ + i sin θ), its n-th roots
are given by r

1
n (cos θ+2kπ

n
+ i sin θ+2kπ

n
), for k ∈ {0, . . . , n − 1}. It follows that the

cubic roots are:

z0 = 3
√

2
(

cos 2π

9 + i sin 2π

9

)
,

z1 = 3
√

2
(

cos
(8π

9

)
+ i sin

(8π

9

))
,

z2 = 3
√

2
(

cos
(14π

9

)
+ i sin

(14π

9

))
.

(c) Find all z ∈ C such that z2 + (3 + 4i)z + (5 + 6i) = 0.

Solution: Applying the standard formula for the roots of a polynomial of degree 2
yields that the solutions of the equations are

z1,2 = −(3 + 4i) ± 3
√

3i

2 ,

which gives z1 = −3
2 + (−2 + 3

√
3

2 )i and z2 = −3
2 + (−2 − 3

√
3

2 )i.
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1.3. Power Series Investigate the absolute convergence and radius of convergence
of the following power series

+∞∑
n=0

(−1)n

3n
zn,

+∞∑
n=0

n!
(2n)!z

n,
+∞∑
n=0

n2zn.

Solution: Let (an) be a sequence of complex numbers. We recall that if we set

R =


1
lim supn→+∞|an|1/n , if lim supn→+∞|an|1/n > 0,

+∞, otherwise,

then the associated complex power serie ∑+∞
n=0 anzn converges absolutely if |z| < R

and diverges if |z| > R. Since

lim sup
n→+∞

∣∣∣∣∣(−1)n

3n

∣∣∣∣∣
1/n

= lim
n→+∞

1
(3n)1/n

= 1
3 ,

we have that the first power serie of the exercise is absolutely convergent if |z| < 3.
Since

lim sup
n→+∞

∣∣∣∣∣ n!
(2n)!

∣∣∣∣∣
1/n

= lim
n→+∞

(
n!

(2n)!

)1/n

≤ lim
n→+∞

( 1
n!

)1/n

= 0,

we have that the second power serie of the exercise is absolutely convergent if |z| < +∞.
Since

lim sup
n→+∞

∣∣∣n2
∣∣∣1/n

= lim
n→+∞

(
n2
)1/n

= 1,

we have that the third power serie of the exercise is absolutely convergent if |z| < 1.

1.4. Differentiability, Cauchy-Riemann and Holomorphicity Provide, with
proof:

(a) some function f : C → C such that, for some z0 ∈ C, f satisfies the Cauchy-
Riemann equations at z0, but is not holomoprhic at z0;

Solution: Define f(x + iy) =
√

|x| · |y|. In this case, setting f = u + iv we have that
u(z) = u(x + iy) =

√
|x||y| and v ≡ 0. By the very definition of partial derivative, we

get that

∂u

∂x
(0, 0) = lim

x→0

u(x, 0) − u(0, 0)
x − 0 = lim

x→0

0
x

= 0,
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and similarly ∂u
∂y

(0, 0) = 0. So the Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x

are clearly satisfied in z = 0. However, f is not holomorphic at the origin, since
choosing for instance the particular complex increment of differentiation H = 1 + i,
we get that

lim
τ→0
τ>0

f(τH) − f(0)
τH

= lim
τ→0
τ>0

1
τ

τ

1 + i
= 1

1 + i
̸= 0,

On the other hand if we choose H = 2 + i than a similar argument gives that the
above limit is

√
2

2+i
Hence the limit of the differential quotient (f(h) − f(0))/h depends

on how h ∈ C approaches zero.

(b) functions u, v : R2 → R such that, for some p0 = (x0, y0) ∈ R2, the function
(u, v) : (x, y) 7→ (u(x, y), v(x, y)) is differentiable at p0, but the function u+iv : C → C
defined for z = x + iy by (u + iv)(z) = (u + iv)(x + iy) = u(x, y) + i · v(x, y) is not
holomorphic at z0 = x0 + iy0.

Solution: Consider u(x, y) = v(x, y) = x + y. Then the function (u, v) : (x, y) 7→
(u(x, y), v(x, y)) is differentiable at every point in R2. On the other hand, the equation
∂u
∂y

= − ∂v
∂x

is clearly not satisfied.

1.5. Applications of CR equations Let Ω ⊂ C be a domain, i.e an open connected
subset of C.

(a) Let u : Ω → R be a differentiable function such that ∂u
∂x

(z) = ∂u
∂y

(z) = 0 for all
z ∈ Ω. Prove that u is constant on Ω

Solution: Fix z ∈ Ω and let w ∈ Ω so that the segment γ(t) = (1− t)z + tw, t ∈ [0, 1],
is contained if Ω. Define the function g : [0, 1] → R by g(t) := u(γ(t)). Since u and γ
are differentiable, we have that g ∈ C1(0, 1), with derivative

g′(t) = ∇u(γ(t)) · γ′(t),

where ∇u(γ(t)) = (∂u
∂x

(γ(t)), ∂u
∂y

(γ(t))) and γ′(t) = w − z. By assumption, ∇u ≡ 0
everywhere, hence g′ ≡ 0, implying u(w) = g(1) = g(0) = u(z). Suppose now w ∈ Ω
is arbitrary. Since the domain Ω is open and connected there exists a finite sequence of
points w0, w1, . . . , wN in Ω so that w0 = z, wN = w and for every j = 0, . . . , N −1 the
segment joining wj to wj+1 is contained in Ω. Repeating the previous argument on each
segment, we obtain that u(z) = u(w0) = u(w1) = · · · = u(wN−1) = u(wN ) = u(w) for
all w ∈ Ω, showing that u is indeed a constant function.
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(b) Let f : Ω → C be holomorphic and f ′(z) = 0 for all z ∈ Ω. Prove that f is
constant in Ω.

Solution: Since f is holomorphic in Ω, its real and imaginary parts are is particular
differentiable in the sense of real analysis by looking at Ω as a subset of R2. Moreover,
since 0 = f ′(z) = 2∂u

∂z
=
(

∂u
∂x

+ 1
i

∂u
∂y

)
we have that ∇u = (∂u

∂x
, ∂u

∂y
) ≡ 0 in Ω. By point

(a) we get that u must be constant in Ω. The same holds for v by noticing that
f ′(z) = 2i∂v

∂z
. Hence, f = u + iv is constant in Ω.

(c) If f = u+ iv is holomorphic on Ω and if any of the functions u, v or |f | is constant
on Ω then f is constant.

Solution: If v is constant, we get from the Cauchy-Riemann equations that ∂u
∂x

=
∂v
∂y

= 0 and ∂u
∂y

= − ∂v
∂x

= 0 implying by point (a) that u is also constant, and therefore
f is constant. The same holds if u is constant by interchanging the roles of u and v.
If |f | =

√
u2 + v2 is constant, then also |f |2 must be constant. Hence, by applying

the Cauchy-Riemann identities, we get that

0 = ∇|f |2 =
(

2v
∂v

∂x
+ 2u

∂u

∂x
, 2v

∂v

∂y
+ 2u

∂u

∂y

)
=
(

2v
∂v

∂x
+ 2u

∂v

∂y
, 2v

∂v

∂y
− 2u

∂v

∂x

)

implying that

v
∂v

∂x
+ u

∂v

∂y
= 0 = v

∂v

∂y
− u

∂v

∂x
. (1)

Now, multiplying the left hand side by v and the right hand side by u we get that
the expression simplifies in

(u2 + v2)∂v

∂x
= 0.

We have now two possibilities: if u2 + v2 vanishes somewhere, by the assumption
|f | = constant we get that u = v = 0 everywhere in Ω. Otherwise, from the above
expression we deduce that ∂v

∂x
= 0 in Ω. The same argument proves that ∂v

∂y
= 0 by

multiplying the left hand side of (1) by u and the right hand side by −v. This proves
by part (a) that v is constant and hence as above f is constant.

1.6. ⋆ Geometric transformations of the complex plane

(a) Describe the transformation f : C \ {0} → C given by f(z) = 1
z

in terms of
geometric operations on the complex plane. Find the image of the unit circle under
this transformation.
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Solution: The transformation g(r(cos θ + i sin θ)) = r−1(cos θ + i sin θ) performs
an inversion with respect to the unit circle. This means that points inside the unit
circle are mapped to points outside the unit circle, and vice versa: if |z| < 1, then
|g(z)| > 1, and if |z| > 1, then |g(z)| < 1. The given transformation f can be seen as
composition of g with the reflection across the real axis. In formulae, the argument θ
of the complex number z = reiθ is changed to −θ. Thus, the transformation f(z) = 1

z

can be viewed as a combination of an inversion in the unit circle and a reflection
across the real axis.

Notice that the reflection across the real axis leaves the modulus of a complex number
unchanged. It follows from this, together with the property of g above, that the
image of the unit circle through f has to be a subset of the unit circle. Being f an
involution (that is, f = f−1) we get that in particular f is invertible, hence the image
of the unit circle is the whole unit circle.

(b) Let f : C \ {−1} → C be defined as f(z) = z−i
z+i

. Show that this transformation
maps the upper half-plane {z ∈ C : Im(z) > 0} to the unit disk {z ∈ C : |w| < 1}.

Solution: For w = f(z) = f(x + iy), the modulus of w is:

|w| =
∣∣∣∣z − i

z + i

∣∣∣∣ = |z − i|
|z + i|

=

√
x2 + (y − 1)2√
x2 + (y + 1)2

.

For z ∈ C with Im(z) = y > 0, we see immediately that the denominator is larger
than the numerator, from which the claims follows.

1.7. ⋆ Let u : C → R be a real-valued function on C.

(a) Show that there is at most one holomorphic function f : C → C such that
Re(f) = u and Im(f(0)) = 0.

Solution: Suppose there are two holomorphic functions f1 and f2 such that:

Re(f1(z)) = Re(f2(z)) = u(z) for all z ∈ C

and

Im(f1(0)) = Im(f2(0)) = 0.

Define the difference h(z) = f1(z) − f2(z). Then:

Re(h(z)) = Re(f1(z)) − Re(f2(z)) = 0 for all z ∈ C.
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Since the sum of holomorphic functions is itself holomorphic, h is holomorphic
and its real part is zero. But using Exercise 1.5 c, this gives that h is constant.
This in return says that Im h is constant. Since (Im h)(0) = Im(f1)(0) −
Im(f2)(0) = 0 this constant is zero.This then implies that h ≡ 0, i.e. f1 = f2.

(b) Give an example of a C∞ function u such that there is no f as in the previous
item.

Solution: Consider the function u(z) = u(x + iy) = x2. Suppose there is
such a holomorphic function f(z) = u(z) + iv(z) = x2 + iv(x, y). Since f is
holomorphic, it must satisfy the Cauchy-Riemann equations:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

For u(z) = x2, we compute the partial derivatives:

∂u

∂x
= 2x,

∂u

∂y
= 0.

From the Cauchy-Riemann equations, we then obtain:

∂v

∂y
= 2x and ∂v

∂x
= 0.

From ∂v
∂x

= 0, we conclude that v(x, y) is independent of x, so we can write
v(x, y) = g(y) for some function g depending only on y.

Next, from ∂v
∂y

= 2x, we get:

g′(y) = 2x.

However, this is a contradiction because the right-hand side 2x depends on x,
whereas the left-hand side g′(y) depends only on y. This shows that no such
function v(x, y) can exist.
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