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Preface

This work follows quite accurately the course taught by Professor O.Imamoglu at
ETH Ziirich in the years 2023 and 2024, based once again on the book by Stein and
Shakarchi [SS10], properly cited during the proceedings. The material has then under-
gone some changes in the notation and also some slight changes in the reformulation of
a few concept. It does not contain nevertheless any change in the content itself, which
is a good thing, given the title on the title-page.

In case the reader shall notice any imprecision, mistake, typo or similar, we kindly
encourage the reader to report them by sending an e-mail to:

acompagnoni@ethz.ch

specifying “Complex Analysis - 7 in the object, immediately followed by the topic under
discussion. Please note that “relatively long” times of response ought to be expected.

Two quick remarks about the notation:

(i) It is possible that the reader might still see some parts of this work being written
in red. These are my comments or remarks about the content: they might of
interest (expecially to understand the notation), but are not necessarily content
covered by the Professor in class. This also applies to the Appendix

(ii) To avoid misinterpretation of notation, when possible, hence when a line ends with
a mathematical symbol with nothing following (except a displayed mathematical
formula), the last punctuation symbol of the above mentioned line is omitted.

The webpage of the lecture is available here:
Funktionentheorie/Complex Analysis Autumn 2024

We shall conclude by showing the very last blackboard of the course, to keep in mind
while reading.

il


mailto:acompagnoni@ethz.ch
https://metaphor.ethz.ch/x/2024/hs/401-2303-00L/

v

I wish the reader an interesting view.

Sincerely,
Andreas Compagnoni
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Chapter 0O

Introduction

Our goal this semester is to study functions
f:C—>C
defined on the complex plane C, or on an open set €2 of C.

We will see that the study of Complex Function Theory is not simply the study of
functions on R?: in fact, the theory of functions of one real variable is in many ways
more complicated than the theory of functions of a complex variable.

To give on idea of what I mean let’s try to compare and contrast:

1. Tt is not too difficult to find a function of a real variable that is in D"(R) but not
in D*>(R). Consider

f:R=R, x'—>f(x)={ gQSin(x%) :iEI{ROE{O}

The derivative of f exists for every x € R, including z = 0, with f/(0) = 0.
Hence, f is differentiable, but its derivative is not continuous, therefore it’s not
differentiable twice.

By integrating f as many times as one likes, one can obtain a function h, that is
differentiable that many times, but not infinitely differentiable.

In contrast: we will see that if f : C — C is differentiable once, then it is
differentiable infinitely many times.

2. There are functions f : R — R that are infinitely many times differentiable, whose
Taylor series does not represent f, i.e. f is not analytic. E.g.

[ RSR, Wﬂx):{gxp(z—%) ji?ﬁ)}m}

1
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Then f is infinitely differentiable. Unfortunately, at = 0 all derivatives are zero.
Hence, its Taylor series is identically zero and cannot represent f

In contrast: if f: C — C is a function of a complex variable, which is differen-
tiable, then f is analytic, i.e. it can be represented by a power series (differentiable
= analytic).

3. There are plenty of C*°(R) functions of a real variable that are bounded, e.g.
sin(x), cos(x)
In contrast: we will see that if f : C — C is differentiable and bounded, then it
is constant (Liouville’s Theorem [2.8))

4. For two functions of a real variable f, g, they both can ”agree” (be equal) on an
open set without being equal.

In contrast: if f,g : C — C are two differentiable functions which coincide on
an arbitrarily small disc (or even a convergent sequence (z,)nen), then f = g
(Analytic continuation principle [2.10))

Remark 0.1. The power of Complex Function Theory comes from this "robustness”
or rigidity. It is a field in which, in some sense, Analysis, Geometry and Algebra come
together.

This, we will see, allows one to prove Theorems that a priori seem to have nothing to
do with complex numbers.

Example 0.1. 1. The integral
o0 [e.e] /2
/ cos(t?)dt = / sin(t?)dt = Tﬂ
0 0

2. Let w(x) := #{p € P: p < x} with P denoting the set of prime numbers. Then
x
7T(£> Nr—soo 77~

log(z)
Result know as the Prime Number Theorem[A.5, as

3. If f € C[X] is a non-zero polynomial, then f has a zero in C (Fundamental
Theorem of Algebm not valid in R for instance).

4. Let ra(n) = #{(my,....,mq) € Z*: Y1, m? =n}, then ry(n) = 8> amd
ahd

Before we start with the definition of differentiability of a function of a complex variable,
we recall the definitions and basic properties of complex numbers.



Chapter 1

Preliminaries to Complex Analysis

1.1 The complex numbers and the complex plane

Definition 1.1. The set of complex numbers is

C:={z+iy:r,y € Rand i* = -1}

Imaginary axis

z=z+iy=(z,y)

~.
<
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|
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|
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We consider R C C using the following fact:

dg :R—>C, r—=r+i-0

Definition 1.2. For z = z + iy € C we define

Re(z) ==z

as the real part of z and
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as the imaginary part of z. Moreover, we define the complex conjugate of z as

Zi=x—1y

Proposition 1.1. For z € C it holds that:
(i) Re(z) = 5
(i) Im(z) = 357
)
)

(iii) zeER<=2z=72

(iv) z€iR<= 2z =

—Z
P?”OOf. (1) Re(z) — 2?33 — :L‘-&-iy-;x—iy _ z+Z

2
. o ety e
(ii) Im(z) =y =3¢ = =75 =%

(iii) We prove both directions of the equivalence

=—: Assume z € R, then z=24+i0=2—i10=2

<: Assume z = Z, then z — 2 = 0 = x + iy — (x — iy) = 2iy. This means that
y = 0 and hence that z € R

(iv) We prove once again both directions of the equivalence

=>: Assume z € iR, then 2z =0+ iy =0 — (—iy) =
<—: Assume z = —Z, then z 4+ 2 = 0

= 2.
consequently that z € iR

This means that x = 0 and

O

Definition 1.3. For z € C, if z = Re(z), then z is said to be (purely) real, whereas
if z = Im(z), then z is said to be purely imaginary

Algebraic Structure of C

Complex numbers can also be represented as ordered pairs of real numbers in R?
for z € C we have that

z = (z,y)
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and where for another complex number w € C we have that z = w with w = (u,v) <=
x =wu and y = v. Moreover, we defined the following operations:

Addition in C: if 2 = 2z 4+ iy and w = u + v, then
z4+w:=(r+u)+i(y +v)

or as pairs in R?
z+w = (r+u,y+v)

Multiplication in C: if z = z + iy and w = u + v, then
zow:= (v +iy) - (u+iv) = zu+i(ev + yu) + i*yv = (zu — yo) + i(zv + yu)

or as pairs in R?
z w2 (zu — yv, zv + yu)

Note that i 2 (0,1) and (0,1) - (0,1) = (=1,0) & —1, as 1> = —1

R? with these two operations +, - becomes a field, i.e. (R, +,-) satisfies the following:
e (R? +) is an abelian group with additive identity 0 2 (0, 0)
e (R?\ {(0,0)},-) is an abelian group with multiplicative identity 1 = (1,0)
e The (commutative) distributive law holds:

V21, 29,23 € C: 29(22 + 23) = 2120 + 2123 = (20 + 23)21

Therefore, complex numbers form a 2-dimensional commutative algebra over R: in this
case “2” can be substituted with with “=". Interchanging hence the meaning of R?
between field structure and the simple usual real vector space, we can prevent any
abuse of notation, leaving then any other accentuation of the difference between these
structures only to possibly increase the clarity in the proceedings.

Definition 1.4. The real number

|z| = vVzz =22+ y2 €R

is called the norm, modulus or absolute value of z € C

Additive inverse of z € C:
—z = (—.’E, _y)
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Multiplicative inverse of z € C:

Z_l—iﬂ x _y
- ‘ZP - x2—|—y2’x2+y2

Polar coordinates representation of complex numbers

We also have the following polar coordinates representation of complex numbers:

z =1 +iy =r(cos(d) + isin(0)) = re”

where 7 > 0, 0 € R with |z| = r, x = rcos(d) and y = rsin(0)
The polar representation is not unique unless z # 0 and we restrict € (—m, 7| (or any
other interval of length 27).

Definition 1.5. The number 8 € R is called the argument of z € C, which is
defined uniquely up to a multiple of 27 and is denoted by

arg(z) = {0 eR: z € |z|e"}

From this we define then

Definition 1.6. The argument of z € C chosen in the interval (—m, 7] is called the
principal argument of z € C and denoted by Arg(z) € arg(z)

It holds that: Arg(i) = § and Vc € (0, 4+00) : Arg(—c) =7

Remark 1.1. No assignment of arqgument is made to 0 € C; therefore we often consider
C* = C\ {0}, also known as the group of units of C
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Proposition 1.2. Let z =z + iy € C*, then

arcsin <I7yl) , € Rxg

/N

Arg(z) = T — arcsin i) , T € Reg,y € Ryg

z|

—m — arcsin (i) , 2,y € R

||

Proof. Here is enough to observe that for ¢ € [—1,1], arcsin is the unique number
u € [_T”, g] such that sin(u) = ¢. By using the various mirroring in the unit circle
(indeed we divided by |z|), we obtain the result. O

Proposition 1.3. For z € C, it holds that

arg(z 1) = —arg(2)
arg(zw) = arg(z) + arg(w)

Proof. The proofs of these equalities are direct
arg(z ) ={0eR: 27" =[]’} = {0 eR: ﬁ = ]z_lleie} =
z
z 1 . .
= GER:—:—eZG}: fcR:z=|ze’) =
{rer: EN A ")
={0eR:z=zle”} ={-0€R:2=|z]e"} =
=—{0eR:z=|z]e"} = —arg(2)
where @ is defined with respect to 2~! and where we used that |z7!| = ‘71| as consequence
of a simple computation. Moreover, we have that
arg(zw) = {# € R : 2w = |zw|e”, 0 =0, + 0, } =
=10, +0, € R: 2w = |zw|e®T0)} =
={0.+0, € R: 2w = |z]e" |w|e®} =
= arg(z) + arg(w)
O

Remark 1.2. Despite these results, it is not always the case that for z € C we have

Arg(="") = — Arg(2)
Arg(zw) = Arg(z) + Arg(w)

as shown n the following example.
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Example 1.1. It holds that Arg (‘7) =7 # — Arg(—2) and also that m = Arg(—1) =
Arg ((—i)(—i)) # Arg(—i) + Arg(—i) = =% — 2 = —, hence the properties mentioned

27 2
above do not hold for Arg

Matrix representation of complex numbers

This representation is obtained by associating a 2 X 2 matrix to a complex number
written in standard form; some properties of the operations between matrices translate
directly into the ones in C, as exposed below.

a

b

fa =b\ (¢ —d\ [ac—bd —(bc+ ad)
ZW_(b a)(d c>_(bc—i—ad ac — bd )
On the other hand, we have zw = (ac — bd) +i(bc+ ad). The multiplication in C hence
corresponds to the multiplication of the respective matrices in R?*?

For z =a+1ib € C, letZ:( _ab) while for w = ¢+ di, let W = (C _Cd),then

d

We can represent any z € C with the matrix

7= (i) 7)) = (i)

2
. 0 —1 0 —1 10
where ¢ € C corresponds to (1 0 ) and (1 0 ) =— (0 1)

In polar form z = re??, the corresponding matrix is
g cos(d) —sin(d)\  (r 0\ [cos(d) —sin(f)
- sin(d) cos(f) /] \O r) \sin(d) cos(8)

Topological results

Proposition 1.4. The following properties hold for the complex norm | - |:
(i) VzeC:lz| =0<=2=0

(11 Vzl,zg eC: “21‘ — ’ZQH < ‘Zl —22| < ’Zl| + ’ZQ‘

)

)

(iii) Vz1, 22 € C: |z129] = |21]] 2]

(iv) V2 € C: |7 = |2|
)

(v) Yz € C:|Re(z)| < |z| and |[Im(z)| < |7
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Proof. (i) It is very convenient to prove both implications directly:

<=: This direction is trivial, consider z = 0, then |z| =02+ 02 =0

= 0= /22 + 12 = |2| & 2? +y* = 0 with both z2,3? > 0. This implies that
x,y = 0 and with it that z =0

(ii) First, we prove the triangular inequality:

[NIES

Vzi,20 € C |z — 20| = (|Z1|2 + |2e)?® + 2(z120 + y13/2))
1
< (|21l + [22)* + 2(|21]22])® =

= (=11 + |,z2|)2>é —

= |21 + |22]

<

in which we used the Cauchy-Schwarz Inequality in C. Applying then this
initial result, we obtain

|21 — 22 + 22| < |21 — 22| + |22

<~ |Zl| — |ZQ| S ‘Zl — 22|

and since this holds for all zq, 2o € C, then by swapping z; and 2o we obtain the
same inequality in absolute value, namely

}|z1| - |22H <z — 2|

(iii) Let 21,2 € C, then |z129| = V21227122 = V2171202 = 2121/ %27 = | 21| 2]
(iv) For z € C we have |Z]| = |z —iy| = /22 + y? = |z + iy| = |2|
(v) For z € C we have

|Re(2)|* = 2”
[Tm(2)* = y?
Applying the /- function, which is a monotonically increasing function, we obtain

the wished result.
O]

Proposition 1.5. If z = re¢® € C* and w = se® € C*, then

2w = rse’®V) e C*




10 CHAPTER 1. PRELIMINARIES TO COMPLEX ANALYSIS

Proof. This result follows from simple multiplications rules:

0 i(0+v)

zw = re'’se’” = rse
Since both r, s are non-zero then also their product is not, hence zw € C* O

Next, we recall some definitions that we need from Topology and Analysis.

Definition 1.7. We denote the open disc of radius r > 0 centred at z with
D, (z) or D(z,r) and the closed disc of radius r > 0 centred at z with D,(z) or

D(z,7). They are both defined as follows

Dy(z) ={weC:|w—-z|<r}
D, (z) ={weC:|w—z <r}

The boundary of D,(z) is the circle

Remark 1.3. Ifr > 0, thenVz € C: D,(2) = D,(z), hence in this case the closed disc
15 equal to the closure of the open disc.

Definition 1.8 (Open set). A subset U C C is open, if
V2eU3r>0:D.(z2) CU

The set of all such open subsets of C is called the standard topology of open
sets of C and denoted by O¢

E.g. 0,C,D,(z) and H:={z € C: Im(z) > 0}

Definition 1.9 (Closed set). A subset U C C is closed, if C\ U is open.

E.g. 0,C, D,(2),C,(2) and R

Proposition 1.6. The following equivalence holds:

U is closed <= (V(zn)neN* eUV . limz,=2=z¢ U)

n—o0
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Definition 1.10. A subset K C C is compact, if it is closed and bounded, i.e. if it
is closed and if IM > O0Vz € K : |z| < M

Proposition 1.7. K C C is compact, if and only if every sequence (2, )pen- € UN
has a subsequence that converges to a point in U

E.g. 0, D.(2),C.(2) and [a,b] x ¢, d]

Definition 1.11. A subset A C C is called disconnected, if
U,V eOc:(UNV =0)and (ANU # @) and (ANV #0) and (ACUUYV)

A subset A C C is called connected, if it is not disconnected.
Moreover, a connected open non-empty set () 2U C C is called a region or domain.

We mention here that in any euclidean space: a connected open set is automatically
open and path-connected and vice versa. Any two distinct points zg, z; in an open
connected set A C C can be connected by a polygonal path lying in A

Zp

E.g. 0,C, D,(2), D,(2),C,(z) and R are connected, whereas Z,Q and R U D;(2i) are
disconnected.

Definition 1.12 (Convergence of a complex sequence). A sequence (2, )nen = (T, +
in)nen- € CV converges to z = x + iy in C, if one of the following equivalent
conditions holds:

(i) lim,, oo ©, = z and lim,, .y, =y in R

(ii) limy oo |20 — 2| =0in R
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(iii) Ve > 03N € N*Vm,n > N : |z, — 2| < €, 1.e. (2n)nen+ is a complex Cauchy-
sequence.

Definition 1.13 (Limits). Let U C C be an open subset and f € CY any function.
For zp € U and wy € C we have

Jim (2) = w0
zeU

if one of the following equivalent conditions holds:
(i) Ve > 030 >0z €U : |z — 2] <d = |f(z) —wo| <&

(ii) If (2n)nen- € UY is a sequence with lim,, o 2, = 20, then lim,, ., f(2,) = wo

Definition 1.14 (Continuity of a function). A function f € CY is continuous on
U, if and only if
Vzo € U : lim f(z) = f(z0)

Z—r20

that is, if and only if

V(2p )nen- € UY o lim oz, = 20 = lim f(zn) = f(20)

n—oo n—oo

The set of all continuous functions on an set U is denoted by C°(U) or C°(U;C)

1.2 Holomorphic Functions

1.2.1 Definition and basic properties

This is a central notion for the rest of the class.

Definition 1.15 (Holomorphic function). Let @ C C an open set and f € C% a
complex valued function on €2, then

e f is called holomorphic at z, € €, if
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Here h € C, zp + h € Q (so that the quotient is well defined).
If the limit exists, we denote it with f’(zy) and we call it the derivative of f
at zg

e f is called holomorphic on €, if Vzy € 2 : f is holomorphic at z5 € Q2

e If f is holomorphic on all of C, then it is called entire.

Remark 1.4. Regular or complex differentiable are other words used for holomorphic.
Example 1.2. Let f € CC, f(z) = 2. Then f is entire, since
f(z0 + ) = f(2) zo+h— 2

i =i =i h—l
P h i h Y

Hence, it holds that Vz € C: f'(z) =1

Definition 1.16. The set of all holomorphic functions on {2 is defined as follows

H(Q) :={f € C*: f is holomorphic on Q}

As in the case of real variables, we have

Proposition 1.8. [SS10, Proposition 1.2.2]
(i) The set F(Q2) is a C-vector space. More precisely, if f,g € (Q), then
Va,B € C: af + g € ()

and
Vo, 8 € C: (af + Bg) = af + By

(The zero-function 0 € C® is the zero element of the vector space).

(i) If f,g € (), then fg € S () and
(f9)' = f'g+1d
(iii) If g(20) # 0, then £ is holomorphic at z, and

i / o) — f'(20)9(20) — f(20)g'(20)
(9) & 9 (20)

Moreover, if g € S(2) and Vz € C: g(z) # 0, then 5 € J(Q)
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(iv) If f € U® and g € CY are both holomorphic, then g o f € C% is holomorphic
and

VzeQ:(go f)(z) =4 (f(2) [ (2)

Proof. The claims of this Propositions are very similar to the case of Real Analysis;
therefore here we will only show the fourth.

(iv) Let 2o € Q and wy := f(z) € U. Consider F € C* and G € CY defined by

f(2)—f(20)
F@w:{ s i F

f’(Zo) y £ =20
m@:{ﬂﬂﬁﬂ=w%wo
g’(wo) y W= Wy
Since
f(z) = f(20)

= f'(20) = F(z0)

lim F(z) = lim
Z—r20 Z—r20 z — ZO

we have that F' is continuous at zg
Similarly, G is continuous at wy. Hence, since f is differentiable at z; and hence
continuous at zg, G o f is continuous at zg

For z € Q\ {20} we have
(90 )(z) = (go f)lz) _ 9(f(2)) = 9(f(20))

Z— 20 Z— 20
f(Z g(wo) £( 20
:{ z)wo f(,z“zo() ,f(Z)?éwo}:
, f(2) = wo
G
Note that if f(z) = wy, then F(z) = w‘; ];0
Hence, we finally obtain
(go f)/(20> — lim (g o f)(Z) - (g o f)(Z()) _
2—r20 Z— 20
= lim G(f(2))F(z) =
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since G o f and F are continuous at z

]

Remark 1.5. Note that if f € C® is complex differentiable at zy € Q, then there exists
a complex number ¢ € C such that for all z € C

f(2) = f(z0) + c(z — z0) + E(z, 20)

with E € C® satisfying
E(z, 20)

Z— 20

lim

Z—r 20

=0

Here we have that ¢ = f'(zp)

Example 1.3. 1. Ezample[I.9 and Proposition[1.8 applied repeatedly show that any
polynomial p € C[X] is complez differentiable at every point z € C

For p(z) = 2" with n € N we have that in z, € C:

n_ .n _ n—1 _n-1-k_k n—1
P (20) = lim Z T2 im (2= 20) D ko 2 % _ fim Zz”_l_kz(’)“ =nz) !
z=z0 2 — 20 Z—20 zZ— 20 Z—20 =0
2. Important non-example: Let f(z) = Z, then
flo+h)—flz) 20+h—2 Zo+h-2 h
h N h N h h
For h =t and t € R this limit is 1
For h =it and t € R this limit is —1
Hence limy,_,q w does not exists for any zy € C and consequently f(z) =

Z 1s not holomorphic at any point in C. This procedure can be used more generally
to disprove the existence of a limit, as done here.

Note that f(z) = z as a function R? — R? is given by
F:R*—R?
(‘Tu y) = (SL’, _y)

Hence it is a linear function and is differentiable with

DF(xo,y0) = ((1) _01>
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Recall: A function
F:R*> 5 R?
(z,y) — (u(z,y),v(z,y))

is differentiable at a point Py = (zo,yo) if it exists a linear map dF : R? — R? such

that
- |F(P) — F(Py) — dF (P — Py)||

P—Py HP — POH
P+#P

=0

or equivalently

F(P)— F(Py) =dF(P— F) +Y(P— R)||P - R

P—Py
—

with |U(P — By)| 0

The linear map dF : R? — R? is unique and called the differential of I at . In the
standard basis of R?, dF is represented by the Jacobian Matrix of F', namely DFE":

ou Ou
ox 0O

DF(Iay) = (81) 82)
dz 9y

Recall: We can view C as a 1-dimensional vector space over C with basis Bc = {1} or
as a 2-dimensional real vector space with basis Bg = {1,i}

A map T : C — C is C-linear if
T(z)=M\z

for some A € C. On the other hand, a map T : C — C is R-linear if
T(z)=T(x+1y) =2T(1) +yT (@) =z +pz

with

z2+z
2

using that x = and y =

Hence, every C-linear map 7' : C — C is R-linear, but a R-linear map 7" : C — C is
C-linear only if =0, i.e. T'(i) = iT'(1) (quick and fun to verify).

If (1) = a+iband T(i) = ¢ +id for a,b,c,d € R, then T'(i) =iT(1) = b = —c and
a=d
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x
Y

()20

=:A

If we identify C with R? with 2 = 2 + iy = ( ), since every R-linear map R? — R? is

given by a 2 x 2 real matrix

such a map is also C-linear if A is of the form

a —b
=)
Remark 1.6. Note that in Example the function f(z) = z as map R? — R? is
differentiable with Jacobian equal to
1 0
0 —1

Our next goal is to see how this Linear Algebra fact about R-linear versus C-linear maps
is reflected in the case of a linear function f : C — C and of its complex differentiability.

but which is not of the above form.

1.2.2 Cauchy-Riemann Equations

Let f € C® be holomorphic at zy. If f(z + iy) = u + iv, via some linking R-linear
isomorphism we can also view f as a map from R? to R2, such as

f:R* = R?
(2,y) = (u(z,y), v(w,y))
As specified in , we can identify the two spaces R? and C as equal, hence f 2 f =

=17
This said, the derivative lim,_, ,, %ﬁfzo) exists independently of how z — 2,

In particular, we can have z tending to zy along the line z = x + iy by letting  — o,
hence

[z +iyo) — f(xo + iyo)

1 (20) = lim =
T—T0 xr — 1‘0
— lim f(%yo) - f(ﬂUo,yo) _
T—x0 r — Xy
— lim U(%?Jo) - U(xmyo) 4 lim U(xvyO) — U(l'o,yo) _
T—To T — X T—To T — o

= U, (0, Yo) + 10z(x0, Yo)
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We can conclude from this that the usual partial derivatives wu,(zp),v.(29) exist and
hence also the partial derivative f,(20) = u.(20) + 1v.(20) exists and that

f'(20) = ua(20) + iva(20) = fu(20)
On the other hand approaching zg = xg + 1yo along z = xg + 1y with y — y, gives
[z +iy) — f(zo + iyo)

f/(ZO) = lim =
Y—Yo Y — Yo
— lim f(xo,y) — [ (0, Y0) _
y=yo Y—%Y
— lim ’U(l’o, y) - /U(x(b yO) — 4 lim U(Qfo, y) - 'LL(JL'(), 3/0) _
r—x0 Y — Yo Y—Yo Y — Y

= uy(xm yo) - Z'Uy(x(b yo) =
= vy(20) — 1y (20)

We obtain that the partial derivatives w,(z0),v,(20) also exist together with f,(z9) =
uy(20) + 1, (20) and that

f'(20) = vy(20) — iuy(20) = —if,(20)

By pulling together all previous results we obtain the Cauchy-Riemann Equations
(CR)

U (20) = vy(20)

Uy (20) = —vz(20)

If we introduce two differential operators

o 1[0 0
5'_5(%_1@)
o 1(d .0
3 (o i)

What we have shown can be summarised in

Proposition 1.9. [SS10, Proposition 1.2.3] If f is holomorphic at 2y, then

2 ey =0
and of 9
u
F'(z0) = 5-(20) = 25-(20)

If we write f(z) = f(z,y), then f : R = R2 (z,y) — (u(z,y),v(z,y)) is complex
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differentiable with

Proof. Using the Cauchy-Riemann Equations we have

af 1,0 0 1 L 1 :
525<—+z—>(u+w)=§(ug;+w$+wy—”y):5((“w_”y)+z(vx+“y>):O

By summing together the Cauchy-Riemann Equations and dividing by 2, one can obtain

1 .
f'(z0) = §(fm(z0) —ify(%))
These equations also give

OF () = s + s — 2%(% i) = 22%(2)

0z 0z
If 20 =29+ iy € U and h = hy + ihy € C, then for f being holomorphic at 2z, means
that
[0+ h) = f(z0) + f'(z0)h + hE(h)
with lim,_,o E(h) = 0. If f'(29) = a + ib, then

f’(ZO)h = (a + Zb)(hl + Zhg) == ah1 — bhg + ’L(bhl + ah2)
Hence, if we write f(z,y) = f(z) for h = (hy, hs)T, we have that

= z a —b\ (h
'f((fﬁo,?/o) + (h1,h2)) — f(wo,y0) — (b a ) (h;)
A
This means that f : R2 — R? is differentiable with a C-linear differential
~ ]’Ll _(a —b ]’Ll [ Uz Uy hl
e (2)- () () %)
Using a = u, = v, and b = v, = —u, we get
~ fa =b\  fug uy
D f(zo,y0) = (b a> = (Ux vy)
Consequently, computing the determinant results in

dot (DFwo, 1)) = 12 12 = [ (2)

|h|—0
> 0

2
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Remark 1.7. Recall that we can represent any compler number z = a+ bi with a 2 X 2

real matrix:
. (a —b)
a+ib +—
b a

If f(2) = u(z) +iv(2) is complex differentiable at zg, then f'(z0) = us(20) + iv.(20) has
matrix representation
o) s (Ualz0) —vx(20)
fz0) <vx(zo) uz(20)

On the other hand, the corresponding function

f ‘R? = R? (2,y) — (u(x,y),’u(x,y))

has a Jacobian matrix

piten - (% )

Uy Uy

Comparing these two matrices, we get exactly the Cauchy-Riemann equations:

Uy = Uy

Uy = —1Uy

If one remembers the general form of the Jacobian of a function g : R? — R? and the
matriz representation of a complexr number, then can remember the Cauchy-Riemann
equations.

The previous Proposition shows that f holomorphic implies that % = 0 using the
Cauchy-Riemann Equations, hence that f satisfies the same Cauchy-Riemann Equa-
tions. We also have the following partial converse.

Theorem 1.1. [SS10, Theorem 1.2.4] Suppose f = u + iv € C® for an open set
Q CC. If u,v € CY(;R) and satisfy the Cauchy-Riemann Equations (CR) in €,
then f € () and

_df,,_9f

1) =22 = 5(2)

Proof. Let 29 = xg + iyo € 2 and h = hy + ihy € C. Having u,v € C*(€;R) implies
that
u(zo + h) — u(zo0) = Ozu(20)h1 + Oyu(z0)ha + |h|e1(h)

with &1(h) 22% 0. Similarly,

v(z0 + h) — v(20) = Oxv(20)h1 + Oyv(20)ha + |h|e2(h)
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with e9(h) =00, By then summing these two together we obtain

f(zo+h)— f(z0) = (u+iv)(z0 + h) — (u+iv)zg =
= (Oyu +10,v)hy + (Oyu + i0yv)ha + |h|e(h)

where e(h) = (g1 + €2)(h) 229 0. Using now the Cauchy-Riemann Equations we can

reform the previous expansion in what follows

f(z0+h) — f(20) = (Opu — i0yu)hy + (Oyu + i0,u)hy + |h|e(h) =
= (0yu — 10yu)(hy + ihs) + |hle(h)

h—0

Hence f(zo + h) — f(z0) = (0yu — i0yu)h + |h|e(h) where e(h) — 0

This says that

f(zo+h) = f(20) h—0,
h

Hence f'(zp) exists and is equal to O,u — i0,u = 20,u = 0, f O

Oxu — 10yu

Example 1.4. Let f € C® such that z — f(z) = 2? + y? + 2izy, considering that
u(z) = 2> + y? € R and v(z) = 2xy € R. We analyse the partial derivatives to see
whether and where they satisfy the Cauchy-Riemann equations:

Oyu(z2) =2x 0yv(2)
dyu(z) =2y Oyv(z)

2y
2x

It holds that for all z € C we have Oyu = 2z = Jyv, while Oyu = 2y = =2y = —0,v
1s only true if y = 0. f therefore satisfies the Cauchy-Riemann equations only when
Im(z) = 0. Hence, f is holomorphic only for points on the real axis. For these points

f'(x) = Opu(xg) + 10,v(xg) = 210

Remark 1.8. Many books distinguish between complex differentiability at a point and
holomorphicity at a point as follows:

o Complex differentiability at a point is given, if the limit in exists at that
point.

e Holomorphicity at a point is instead given instead when the limit in exists in
a neighbourhood of that point.

1SS10] does not make such distinction (and in this course we will not need it).
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A quick summary

Let 2 be an open subset of C, then

1. For f € C® with f(2) = u(z) +iv(z) we have that if f is holomorphic on €, then
u, v satisfy the Cauchy-Riemann Equations u, = v, and u, = —v,. Moreover it
holds that

F'(2) = ua(2) —iuy(2)

2. If u,v € CY(Q; C) and satisfy the Cauchy-Riemann Equations, then f = u+ v is
holomorphic.

3. If we write f(x,y) = f(z), for f € #(Q) and identifying C with R2, then
f: R? — R? is differentiable with

Vg Uy

Df(zo,y0) = (um _Um) and det (Df(ﬂfo,yo)> = |f’(20)|2

Remark 1.9. A matriz of the form (a

—b .
b4 > defines a linear map

L:R?* - R?
()~ GG
—
y b a)\y
which preserves angles and orientation, i.e. it is a rotation and a dilation. If a+1ib #£ 0
with a +ib = |a + ible?, then it is a rotation by the angle 0 and a dilation by |a + ib)

Our next result gives important examples of holomorphic functions.

1.2.3 Power series

Recall: A (complex-) power series is a series of the form

o0
E anz"”
n=0

with a,, € C for alln € Nand z € C

Theorem 1.2. [SS10, Theorem 1.2.5] Let > 7 a,z" be a power series. Then IR €
[0, +00] such that

(i) if |z| < R, the series converges absolutely.

(ii) if |z] > R, the series diverges.
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Moreover, with the convention that (—1) = oo and é =0, R is given by

- limsupag[>
— = 111 Su A, | ™
B g

in this case R is called the radius of convergence and
Dgr(0) :={z€C: |z| < R}

is called disc of convergence (or region of convergence).

Proof. Exercise (as in Real Analysis). O

Example 1.5 (Exponential function). An important ezample of a power series is the
complex exponential function

n

z
ey
n!

n=0

This series converges absolutely for all z € C. Also,

o n
le*] < E |Z—|':e|z < 00
n!
n=0

Hence, e* convergence uniformly on compact subsets of C

The following Theorem shows that e* in particular and power series in general give
examples of holomorphic functions in their disc of convergence.

Theorem 1.3. [SS10, Theorem 1.2.6] The power series f(z) = >~ a,2" defines a
holomorphic function in its disc of convergence, i.e. f € A (DR(O)), and

f'(z) = f: na, 2"t
n=1

Moreover, f’ has the same radius of convergence as f, i.e. f' € (DR(O))

Proof. Let R be the radius of convergence of f, since

) 1
lim n» =1
n—oo

then it holds thatfl]

lim sup |nan|% = 1-limsup |an|% =R

Yf {an fnen and {b, }nen are two sequences of non-negative real numbers and b := lim, o by, is
the limit of the second, then limsup,,_, . an,by = (limsup,,_, ., a,)(limsup,, ., b,). In general, lim sup
is submultiplicative for sequences of non-negative real numbers.
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Hence , > >°  na,z"" ! has the same radius of convergence. Repeated applications of
this same argument show that the sum

o0

Z n! a ank
(n—k-1)1"

n=k+1

has radius of convergence R for any £k € N
We now want to show that ‘%ﬂ) — > nayz" 2% 0 in the following way.

Let now z € Dg(0) € C and choose § > 0 such that |z| + 6 < R, e.g. one can take
§= Rg‘zl, with h € C such that |h| < §, then

e " A" — 2"
Z(a (z—l—})L anz —nanz”_l)

- 1 - n k n—k n n—1
Sz‘an‘ E((k—o |:k:|81nhz )_Z>_nz

<

f(Z + h Z?’L&n 1

~
independent of h

. . n n n—= 1 mn— = 2
using in the (!)-step that Vk > 2 : LJ Bin ok {k - 1} Bin - kgk_ll)) Lf - 2} Bin =

n—2

n(n —1) [k B 2} and using lastly in the (+2)-step that |h| < £ |Z‘
Bin

We therefore obtain

- R+1z1\""? o0
1> Janln(n — 1)( s > -0,
n=2
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and so we finally get that

Feth) = 1) 1m0, 55,

h
which concludes the proof. ]
Example 1.6. 1. The exponential function
exp:C—C
o) Zn
z +— exp(z) := Z o
n=0 ’

converges on all of C and as such is holomorphic on all of C, moreover we can
easily extract

, B 0 nznfl B > znfl B 0 peg B
exp <Z>_; n! _;(n—l)' —;m—exp(Z)
2. Trigonometric functions
'L'z fiz > n 2n+1
sin(z) i= ——— = Z 2n Y

o0

cos(z) i= ——— ¢ + ‘ Z

0

2n

n=0

n

with

and , y
. el fe el4+e €241
cos(i) = = =
2 2 2e

For the records, these functions are not bounded.

3. The series

o n

z
)
n=1 n
has convergence radius 1, i.e. it converges for all z € D;(0), since Y peq =5 < 00
4. The geometric series
o
>
n=0

converges for z € D1(0)
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5. The series -

Sy

n=1

converges for all z € D1(0). Moreover, for z = 1 the series converges (Leibniz’
criteria), while for z = —1 the series diverges (Harmonic series).

1.3 Complex Line Integrals (Integrals along curves)

We start by recalling the main definitions and properties of curves.

Definition 1.17. e A parametrised curve in C is a continuous function 7 :
[a,b] — C, i.e. v € C°([a,b]), where [a,b] is a closed interval in R

e A smooth curve is a curve

v la,b] - C
£ (1) = 2(t) + iy(t)

such that its derivative
Y(t) = 2'(t) + iy’ (t)

exists for all t € [a,b], v € C"([a,b]) and /() # 0 for all ¢ € [a, b]
Here, we consider
v(a+h) —~(a)

7 (a) = lim

nd b+ 1) =10
/ 1 7 + _7
v@%—g%

as the right and left derivatives respectively.

e A piecewise smooth curve is a curve v : [a,b] — C such that v is continuous
on [a,b], i.e v € C’O([a, b]), and exist points

a=aqy<a;<..<a,=2=
such that v is smooth on each interval [ay, ax1]
e A closed curve is a curve 7 : [a,b] — C with vy(a) = v(b)

e A curve is simple if it’s not self intersecting, i.e. y(t) # 7(s) unless s = ¢ or
s=aandt=>0
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e 7 is called reparametrisation of ~ : [a,b] — C if there exists a continuously
differentiable bijective function o € C*([c,d]; [a,b]) with V¢ € [c,d] : o'(t) >
0 and with 4 = v o ¢ (the condition ¢’ > 0 means that the orientation is
preserved), i.e. v and 4 represent the same geometric object with different
parametrisation.

Remark 1.10. For us in this course the curves will always be piecewise smooth. From
now on when we say “a curve” we mean “a piecewise smooth one”, even if we forget to
write .

Remark 1.11. We will often work with a particular parametrisation, since most im-
portant notions will be independent of parametrisation (for example path integrals).
Because of this independence, we often describe curves by drawing them as geometric
objects in the plane.

There are two elementary methods to modify or combine paths in order to obtain new
paths.

Definition 1.18. e If v:[a,b] — C,t — ~(¢) is a path, the reverse path 7~ is
the path

v~ :la,b] = C
t—=y (t) =~vb+a—t)

ie. v (t) =~(a+b—1)

y(b) =y~ (a)

y(@) =y (b) Y

o If v : [ag,b1] = Cand 7, : [ag, by] — C are two paths such that v1(by) = y2(as),
then the concatenation or sum of the paths v, 7, is a path

’71@’)/22[a1,b1+b2—a2]—>(c

t= (nyy)(t) = { ol 7 (t) s L€ lar, b

t—b1+(12) ,tE[bl,b1+b2—a2]
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y1(b1) = y2(a2)

(r19 y2)ar) = yi(ar)
' ' A (Y19 y2)(b1 + by —ay) = ya(bo)

Example 1.7. 1. Given two points z1, zo € C, the path

v:[0,1] - C
t>—>(1—t)zl—|—t22

is the (standard) parametrisation of the line segment between z; and zo

Z

smooth simple not closed path

Z1

2. Consider the path

7:[0,4]—>C
t ,tG[O,l]
L+it—1) ,telL?2]
t=y(t) = B-t)+i ,te23]
i(4—1) , 1€ [3,4]

as shown in the picture

i V3 1+ i

piecewise smooth

simple closed path

V4 V2

Y1
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It is clear that v is the sum of four different paths, namely

[
Y21 [0,1] = Cit = y(t) =1+t
73 :[0,1] = C,t = y3(t) =i+ (1 — 1)
71 :10,1] = Ct > y4(t) = 1(1 —¢)

3. A circle with center at zy and radius r has a parametrisation of the form
~v:10,27] - C
t— 29+ re’

C
smooth closed simple path
y(0) = y(2n)
4. Consider also the path
v:[0,1] — C
st +at”
C
smooth non-closed simple path y()
7(0)

29

To define the complex line integrals we recall that a continuous function ¢ : [a,b] — R

is Riemann integrable, i.e. ff g(t)dt exists.
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Definition 1.19. For a complex valued function g € Cl** we can define the integral

/abg(t)dt - /abu(t)dt i /abv(t)dt

where Vt € [a,b] : g(t) = u(t) + iv(t)

Definition 1.20. Suppose 7 : [a,b] — C is a smooth path and f € C* is a complex
valued function, which is defined and continuous on v. We define the integral of f
along ~ by

b

Aﬂdwﬁi/fﬁ@hﬁmt

Since g(t) = f(v(t))7/(t) € C*¥ is continuous on [a,d], the integral on the right is
meaningful, as long as we show that it is independent of the parametrisation of ~

Let 7 : [¢,d] — C be another parametrisation of im(), such that 4(s) = (y o o)(s) for
some o : [c,d] — [a,b] with o € C*([c,d], [a,b]) and o’(s) > 0. Then we have

[ 1@z = [ 1) = [ 1(2loo)y (o) (s)ds
By letting t = o(s) and consequently dt = o'(s)ds, we obtain

/cdf<7(0(S)))7/(0(8))0'(s)ds = /abf(v(t))y’(t)dt = [yf(z)dz

The following properties of path integrals follow from the properties of the Riemann
integral.

Proposition 1.10. [SS10, Proposition 1.3.1] Let f,g € C°(Q; C), v, 71,72 piecewise
smooth curves in ) and a,b € C. Then

(i) The path integral is linear, i.e.

/ (af(2) + bg(2))dz = a[yf(z)dz + bLg(z)dz

Y

(ii) If v~ is the curve v with reverse orientation, then

/Y_ F(2)dz = —/Vf(z)dz
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(iii) The path of integration can be split

/w% G = L f(Z)dz+L2f(z)dz

(iv) The following estimate holds

f )dz| < L, sup !f(z)|

z€im(y)

where for a partition ag < ... < a,, of the interval [a, b] we have

n—1 apt1
Ly = Z/ |7,(t)}dt
k=0 v %k

Proof. (i) Follows from the linearity of the Riemann integral.

(ii) Ifv: [a,b] — C, theny~ : [a,b] — C,t > v(b+a—t) with () (t) = —+/'(b+a—1).
Hence, we have

/_ f(2)dz = —/ FOb+a— D) b+ a—t)dt = /b £ (4(w)) () =

- _ /abf(fy(u))'y’(u)du = _/vf<2)dz

where we used that u = b+ a — ¢ and consequently that du = —dt
(iii) Exercise.

(iv) Consider the following steps:

/ak+1 t)dt| < Z/ )|y (¢)|dt <

< ([ 16 )Z/ Gl

Remark 1.12. If S C C is a set that can be described as the image of a path v in C,
we will then often denote the integral of a function f along this path with |, g fdz
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Definition 1.21 (Primitive). Let f € C%. A primitive of f on ( is a function
F € 7#(Q) such that
VzeQ: F'(2) = f(2)

The existence of a primitive gives

Theorem 1.4. [SS10, Theorem 1.3.2] Let f € C°(Q;C) be a continuous function
on an open set {2 C C. If f has a primitive F' in ) and 7 is a curve which begins at
z1 and ends at 29, i.e. v : [a,b] — C with im(y) C Q, v(a) = z; and 7(b) = 2, then

/ﬂwmzfua—F@n

An immediate Corollary is

Corollary 1.1. [SS10, Corollary 1.3.3] If ~y is a closed curve (i.e. y(a) = (b)) in an
open set , f € C%(;C) and has a primitive in 2, then

/7 F(z)dz =0

Proof of Theorem[1.4 Let F = U(x,y) + iV (z,y) and 7 : [a,b] — C. We first assume
that v is smooth. We define a function

G:la,b] = C
L F((0) = F((t),y(t)

and write v(t) = x(t) + iy(t)

We need to check the compatibility of the real derivative of G' and the complex deriva-
tive of F.

We have that G € C’O( la, b]; C) is a continuous function, hence
G(t) = (U (a(t),u(0) + iV (2() y(1)) ) =
— (U2 (), y)2'(1) + Uy (2(0), y(0) (1) ) +
i (Ve (@0, (1)’ (0) + Vy (2(0), y(0) ' (1)
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by using the Chain Rule from Vector Analysis [EW22]. Now, applying the Cauchy-
Riemann Equations for F' we get

= F'(y(t)7'(t) =
= f(7(t))¥/(t) , since F is a primitive of f on

Hence, we finally get

b b
/ f(2)dz = / £ () ()t = / &(t)dt 2 G(b) — Gla) =

a

= F(’Y(b)) - F(’Y(a)) = F(z) — F(z)

where in the step denoted by (%) we used the Fundamental Theorem of Analysis on G
[EW22].

If 7 is piecewise smooth, then there is a dissection of [a, b] of the form

[a, 0] = U g1, af]

e{1,....,n}
with ¢ =: a9 and b =: a, in accordance with the curve; this means such that for
te{l,..,n} we can define v, := 7y,  ,, and dissect the curve as follows

T = H‘JW
=1

Then

n

/ F(2)de =3 [ f(2)de = 3" Flar) = Flaer) = Flan) — Flao) = F(b) — F(a)

(=1

using the newly obtained result for the smooth case in the third step and acknowledging
the telescopic character of the sum in the second last one. O]

Another Corollary of Theorem [1.4] is the following:
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Corollary 1.2. [SS10, Corollary 1.3.4] Let f € .#°(£2) on an open and connected
subset Q C C. If f/ =0, then f is constant.

Proof. We want to show that for any two points z,w € Q, it holds f(z) = f(w)

Since €2 is open and connected, there is a (polygonal) path v : [0,1] — Q connecting
the two points z,w € €, i.e. such that y(0) = z and v(1) = w

Since f is holomorphic on €, f is clearly a primitive of f’. We can hence use the
Theorem |1.4] on f’ to obtain

[ £z = 1(60) = 1((0) = fw) - £(2)
.
But given that f’ = 0, the integral on the left is equal to zero and therefore f(z) = f(w)
The arbitrariness of the choice of z,w € €2 concludes the proof. n
Example 1.8. An important example is the function

f:C*—>C

1
2=
z

f has no primitive on C*. To see this let v parametrise the circle centred at 0 and of
radius 1, namely C1(0), i.e. v :[0,27] — C,t — €%, then

27 ) ) 2 1 ) 27
/f(z)dz = / f(e®)iedt = / —ie'dt = z/ dt =271 #0
~ 0 o ¢ 0

Example 1.9. What is f7 22dz, if v [0,1] = C,t v t + mit??

Since F(z) = % is a primitive of z*, using Theorem we have that

/szz = F(y(1) - F(y(0)) = LET0 +3m)3

Y

or
1
/z2dz = / (t + mit*)*(1 4 2mit)dt = ...
o' 0

which is much longer.



Chapter 2

Cauchy’s Theorem and its
applications

Cauchy’s Theorem is at the heart of Complex Analysis: it “roughly” says that if f is
holomorphic in an open set {2 and im(vy) C € is a closed (not necessarily simple) curve,
whose “interior” is contained in €2, then

/Wf(z)dz =0

Cauchy’s Theorem, as we will see, has many applications, e.g. Liouville’s Theorem,
which in return gives a proof of Fundamental Theorem of Algebra.

The interior of a path is not easy to define for a general curve. We will work around
this difficulty by first proving Cauchy’s Theorem for curves, whose interior is easy to
define, namely for triangles and rectangles (Goursat’s Theorem).

We then use Goursat’s Theorem to show that a holomorphic function on an open disc
has a primitive in that disc. This then will give us a Corollary: Cauchy’s Theorem on
a disc.

We first need the following Proposition about nested compact sets, but before that we
define a useful notational tool to approach this type of scenarios, namely the diameter
of a set.

Definition 2.1. Let S C C, then we define the diameter of S C C as

diam(S) := sup |a — b
a,bes

35
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Proposition 2.1. [SS10, Proposition I.1.4] If
AV DAD D DA™MD
is a sequence of non-empty compact sets in C with the property that
diam (A(”)) 720

Then

Jlzo € C¥Vn € N* : 25 € A™

Proof. Choose z, any point in A™ . For any n,m € N* such that n > m > 1 we have

|2n — 2m| < diam (A(m)> < 400

Since diam <A(")> 2% 0, this says that (Zn)nens € [hene A™ is a Cauchy sequence,

hence it converges to a limit zyg € C. Then for m > 1, note that Vn > m : z, € Al™)
since z, € A C A Moreover, we have that A is compact, in particular closed
and hence lim,_,o 2, = 2o is also in A" for all m > 1 and z, is unique; since if
20,2 € A for all n € N* and 2z, # 2}, then |z — 25| > 0, which contradicts the

shrinking diam (A(”)> %0 O

2.1 Goursat’s Theorem

Theorem 2.1 (Goursat’s Theorem). [SS10, Theorem II.1.1] Let 2 C C be open
and T a path with shape of a triangle such that im(7T") C €2, whose interior is also
contained in Q. Let f € J#(Q), then

/T F(z)dz =0

Proof. Note that a triangle is a closed curve, which is the union of three line segments.
If T has three corners at z;, 2z and z3, then we will write

3
T = L‘Haz =: (21, 22, 23)
=1

(Note that the sign |4 does NOT represent a “flipped gravestone” ~ Greta from Lo-
carn

Locarno is a southern Swiss town and municipality in the district Locarno (of which it is the
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Z3

as

Z1 ay Zy

with

a;:[0,1] > Cit = aq(t) =21+ (t —0)(22 — 21)
Qa9 [O, 1] — C,t — ag(t) = 29 + (t — 1)(2’3 — ZQ)
as:[0,1] = Cit — as(t) = 25+ (t — 2) (21 — 23)
We now define the simplex
A = {Z < C:z= t1z1 +t222 +t323 and 0 S tl,tg,tg and tl +t2 +t3 = 1}
such that it is the smallest convex set containing zy, 29, z3. We hence have that im(7T") C

A, in fact im(T) = 0A

We will inductively construct a sequence of triangular paths, so we define for all n € N
T = (5", 4", 2)
as follows:

1. Let TO = (29 20 0y — 1 o©

2. Assume that 7™ is defined as 7™ = (2" 2{" 2") then T+ is one of the
the four triangular paths:

n+1
Tl() 2 T2 2

Tt = <
T = <

n) 4 Zén)

Ty = < (

() + Zgn) (n) Z{n) + Zén) >

- <Z§") L O +z§")>

Z(n) Zén) + Z%n)
»~3
2 2

5 1T

2 ’ 2 ’ 2

§n) + zén) zén) + zé") zé") + z%n) >

capital), located on the northern shore of Lake Maggiore at its northeastern tip in the canton of Ticino
at the southern foot of the Swiss Alps. It has a population of about 16,000 (proper), and about 56,000
for the agglomeration of the same name including Ascona besides other municipalities.
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# T;“\
T O
= Tl(l)w

i.e. we are at each step partitioning A using lines parallel to the sides and passing
through their midpoints.

The triangular paths T, é") with & € {1,...,4} are all entirely contained in A and we
have that

T(n)

4
f(2)dz = ; /T,E"“) f(z)dz

/T,é"H) f(2)d=

We choose T+ as one of T,inﬂ) with k£ € {1,...,4} so that

/ f(2)dz
T(n+1)

therefore we get

<4 max
ke{l,...,4}

f(z)dz

T(n)

<4

f(2)dz

T(n)

/Tf(z)dz

We also have that the closed filled triangles A, defined with respect to their 70 in
a similar fashion as A with 7', are nested compact sets

and it then follows that

<4"

f(z)dz
n)

T(

COA=AOD>AD DA D |

Moreover, if d, and P, are the diameter and the perimeter of A™ respectively, then
for all n € N we have
o d P P

= — and P,=— = —

d, = = =
2m 2m 2 2n

Hence

diam (A(”)> 2750

We can now apply the result anticipated by Proposition 2.1} In order to do so, though,
we remember that f is holomorphic at zp € A™ C Q. hence it holds that

f(2) = f(z0) + f'(20)(z — 20) + E(2)
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|E(2)|
|z—20]

with lim, ., = 0. It is clear that F(z) is continuous at zo and that lim,_,,, E(z) =

0
Let & > 0, we will show that I := | [}, f(2)dz| < ePd, which will show that [ f(z)dz =0

To this end, we use the above equation for

[ 500t [ () + P )i+ [ B

T(n)

Using Corollary[L.1] the first integral on the right is zero, since g(z) = f(z0)+ f'(20) (2 —
2p) has a primitive (take G(z) = f(20)z + f’(zo)@ as such) and since the curve is
closed.

Hence, we can reduce to the whole problem to the estimate

/Tf(z)dz /T(n) f(2)dz /T(n) E(2)dz

/ E(z)dz
T(n)

because of the initial assumption on the asymptotic behaviour of £ when approaching
2p, for the given € > 0 we choose an open disc Ds(z) C € such that

< 4" < 4"

By letting
1, =

Vz € Ds(2) : |E(2)] < €lz — 2|

Because d, e, 0, there exists an index N € N such that Vn > N : d,, < . We also
have that zy € A™ for all n € N and that Vn > N : |z — z| < d, <§

Hence, we conclude that Vn > N: A C Ds(2p) and from it we get
1] < 471, | = 4" <o [ 1B <
T(n)

/ E(z)dz
T(n)
P d

34"5/ |z — z0]|dz| < 4”5Pndn:4"52—nQ—n =¢ePd
()

Since € > 0 was arbitrary, we obtain that I = 0 and conclude the proof. n

As a Corollary we get

Corollary 2.1. [SS10, Corollary II.1.2] If f € (Q) is holomorphic in an open
set 2 C C that contains a path R with the shape of a rectangle and such that
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im(R) C Q) as its interior, then

/Rf(z)dz =0

Proof. This follows immediately from the Goursat’s Theorem and by dividing the
rectangle R into two triangles 77,75 as shown in the picture.

Therefore, we obtain

/Rf(z)dz = [ f(z)dz+ | f(2)dz=0

T1 T2

]

For future results, for example for the deduction of Cauchy’s Integral Formula, a minor
extension of this result is useful.

Theorem 2.2 (Goursat’s Theorem stronger version). If a function f € C°(Q) is
continuous in an open set Q and f[g (., € (2 \ {20}) for some 2q € 2, then

/Rf(z)dz =0

for every closed rectangle R C 2, i.e. such that OR = R

Proof. Fix a closed triangle, in the topological sense, R C ). We assume that 2y € R,
otherwise the conclusion follows from the first version above as the integral is 0

Given a positive integer n € N we subdivide R into n? congruent rectangles, such that
OR =R
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Rss
Once again it follows that
/ f(z)dz = Z Z f(z)dz
R =1 j=1 YR
with ale = le. If 20 ¢ le, then
f(z)dz =

Ry

by the first version of Corollary 2.1} If instead 2y € Ry;, then

L
f(2)dz| < M Pg, = M—
n

Ry

in which L is the length of the perimeter of R, Pg,, = % is the length of the perimeter
of Rj; and M = max.cr |f(2)] = || f|loor 18 the maximum of the continuous function
| f| on the compact set R

By construction, the point zy cannot belong to more than four subrectangles: the point
in which touches most subrectangles is a common vertices of all the four. Hence we can
finally consider the following estimate

M INEE

n—o0

<4M —0

f(z)d

ORy;

20 E'R ZoGR

]

2.2 Local existence of primitives and Cauchy’s the-
orem in a disc

To prove the Cauchy’s Theorem in a disc, we will need the local existence of primitives.
We therefore have the following Theorem:
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Theorem 2.3. [SS10, Theorem I1.2.1] A holomorphic function in an open disc D
has a primitive in that disc.

We are going to prove the following version which assumes that f is continuous in D
and that its integral along rectangles whose sides parallel to the coordinate axes vanish.
Which then we are going to use to give a slightly stronger form of Cauchy’s Theorem.

Theorem 2.4. Let D be an open disc in C and f € CY(D) with the property that

/Rf(z)dz =0

for every closed rectangle R C D with OR = R in D and whose sides are parallel
to the coordinate axes. Then f has a primitive in D

Before we prove Theorem [2.4] note that we have as a Corollary.

Theorem 2.5 (Cauchy’s Theorem for a disc). [SS10, Theorem II.2.2] Suppose D C
C is an open disc in C and f € (D), or more generally f € C°(D) with flo\izo} €
(D \ {z}) for some zg € D. Then

A F(2)dz =0

for every closed piecewise smooth path v in D

Proof. Suppose f € C°(D) with f[, ., € (D \ {20}) for some 2, € D, then by
Goursat’s Theorem [2.2]
/ f(z)dz=0
R

for every closed rectangle R C D with OR = R (including the ones, whose sides are
parallel to axes). By Theorem f has a primitive in D and by Theorem and
Corollary we have that f7 f(2)dz = 0 for every piecewise smooth path vin D [

Proof of Theorem[2.]]. Let f € C°(D) be continuous on the disc D and let 2o = xq+iyo
be the center of D
For an arbitrary point z = x+1iy € D such that z # z, let 21 := z+1iyg and 25 := zo+iy
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z Zy =X+ 1Y

Zp = Xg + 1Yy

NS

e \/‘_ !
y,

By assumption

/ f(w)dw + (w)dw + (w)dw + / fw)dw =0
[20,71] [21,7] [2,22] [22,20]

where we denote the path along the line segment linking two points py,ps € D, from
h to b2, with [plapQ]

This sum represent either [, f(w)dw or — [, f(w)dw, depending on the location of z

We define F € CP as follows, for z € D let

F(z) ::/[ ]f(w)dw + f(w)dw

[2273]

which is, by the above assumption

_ / fwydw+ [ fw)dw
[z0,21] [21,2]

Parametrizing the line segments we have
Y T
F(z) = z/ fxo +it)dt + / f(t+iy)dt
Yo zo
and N y
F@):/nﬂt+w@ﬁ+¢/)ﬂx+ﬁﬂt
xo Yo
Using both the above results and the Fundamental Theorem of Analysis [EW22]:
d x
dz [,

if g € C°(D,(a)NR; C) with g(t) = f(t-+iy), then we have that F,(2) = f(z+iy) = f(z).

Similarly, since

g(t)dt = g(x)

d Y
ay J. 0t =hiy)
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if h € C°(D,(a) NR;C) with h(t) = f(z +it), we have F,(2) = if(z + iy) = if(z)
(for both parts we used that the first integral in the equations are independent of z,y
respectively). Hence, it follows that F, F, exist and are continuous, so F' € C*'(D)
At this point, since F,(z) = f(z) and F,(z) = if(z), if we write F(z) = u + v, then
this gives

f(2) = Fu(2) = uy + v, = —iFy(2) = —i(u, + ivy) = v, — iu,

Hence v, = v, and v, = —u, and so the the Cauchy-Riemann equations hold.

Finally, we know that F' € C(D) and that F satisfies that Cauchy Riemann Equations,
therefore by Theorem F e 2(Q) and

o) =90 = 1(2)

hence F' is a primitive of f m

Corollary 2.2. [SS10, Corollary 11.2.3] Let f € (Q2) for Q@ C C an open set
containing a circle C' and its interior, then

/C F(2)dz =0

Sketch of a proof. Simply consider F(z) := f'Yz f(w)dw as in the following illustration.

]

Remark 2.1. Corollary s in fact valid whenever we can define the interior of a
contour unambiguously and construct polygonal paths in an open neighbourhood of both
the contour and its interior. In [SS10] these contours are called toy contours.

Remark 2.2. Note that Cauchy’s Theorem does not say anything about integrals
of functions over arbitrary open sets and arbitrary closed curves. Indeed recall Example

38
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Some applications of Cauchy’s Theorem

We can use Cauchy’s Theorem for a disc to calculate some integrals.

Example 2.1. We can show by parametrizing the circle that for all r > 0 we have:

1
/ dz = 2mi
Cr(z0) # — ?0

Indeed, the circle of center zy and radius r has parametrization o(t) = zo + re' for

t € [0,27] and hence
1 S|
/ dz = / —tzre’tdt = 2mi
lw—zo|=r # — ?0 o re

Now, using Cauchy’s Theorem [2.5 we can also show that

1
/ dz = 2mi
R*Z %0

for any rectangle R with center at z

Note that fR —dz s mot zero, since ; s not continuous at zy and hence Cauchy’s
Theorem [2.5 does not apply directly. We “can though use it as follows:

! Bs P

Let C.(zg) be the circle that circumscribes the rectangle R and

R=1im (H—J ’yk) and Cr(z0) =im (L"_'J ﬁk)

k=1

For each k € {1,...,4} we choose an open disc Dy, so that the trajectory of the closed

path v, W B, is in Dk and so that f(z) = %ZO is holomorphic in Dy,
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Now we apply Cauchy’s Theorem to ﬁ in disc Dy, to v W B, in Dy, to get

/ f(2)dz=0
VWP,

1 1
/ dz:/ dz
’YkZ_ZO 5k2—20

But then, considering then all paths at the same time, we get

1 1
dz = / dz
/L;Ji=1 Tk 2T % E‘Ji=1 Bk Z =20

1 1
/ dz = / dz = 2mi
R?R— 20 Cr(20) zZ— 20

Example 2.2 (Fresnel integrals). Fresnel proved the following identity:

/Ooo cos(z®)dx = /OOO sin(2?)di = Vor

From this follows that

and hence

4

To show this we first note that the map ¢ has real and imaginary parts cos(z?) and
sin(z?). If we can prove that

oo /2
0

then we are done. We are naturally led to define f(z) = ¢ which is holomorphic in
all of C as follows.

where
Y1 :[0,R] = C,t— y(t) =t
V2 [0, ﬂ — C,t > 1(t) = Re"
v 1[0, R] = C,t — 75(t) = te't
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We have that for v := v & v W y5

/eiZde =0
¥

This separates into all its components as follows:
R . ) . 9 -2 s R 2
/ e”dt:—/e”dz—}—/e”dz:—/e”dz—i—e“l/ e Vdt
0 V2 V3 V2 0

Claim.

Proof of the claim. Expanding the integral we have

jus

g 1
/ezz dz| < —/
72 0

7,(R2 (cos(2t)+isin(2t)) it

(R2p2it)
ez(R e )ezt

el(Re™)?; p it dt =

ﬁ:R/4
0

dt =

R? cos(2t) —R?sin(2t)

|e“| dt =
—~—

=1
i R R—o0 1
_ /0 eRQSm(%)dt /0 0dt = 0

Using that the last integrand in bounded for R € [0, +o0) and therefore applying the
Dominant Convergence Theorem [Da 24| to swap the limit and the integral. ]

Therefore we have

lim
R—o0 0

"’ Pt = 1+z\/_/ v2r

1+)22

since from [EW22] we have that [;° e dt = YT

Remark 2.3. Note that the use of compact paths to solve this kind of integrals in a
very useful tool. One first solves the compact case and then by letting some parameter
approach its limit case of interest, if the integrand is nice enough, the complexity of the
problem can be considerably reduced.
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2.3 Cauchy’s Integral Formulas

We are going to prove Cauchy’s Integral Formula (CIF), from which we will deduce
many properties of holomorphic functions.

Theorem 2.6 (Cauchy’s Integral Formula). [SS10, Theorem I1.4.1] Suppose f €
() is holomorphic in an open set ) that strictly contains the closure of a disc
D,ie. D C Q. If C = 0D denotes the boundary circle of this disc D with positive
orientation, i.e. counterclockwise, then

f(w)

1

Remark 2.4. Note that Cauchy’s Integral Formula says that the values of f on D are
determined by their boundary values on the circle C'

Proof. Let zy € €, since Q is open, there exist r > 0 such that D,(z) C €, still since
Q2 is open, Vz € 0D, (z) : z € Q and so 3¢ > 0 : D,;.(20) C Q. We obtain from this
that C,.(z0) C Dy1c(20). We let z € D,(2) and define

[@IG) 2,
g:Dpye(z0) = Cow— g(w) = { f“;(—;) ’ " 7: s

Then it holds that g € C°(D,4.(z0)) and away from z we also have that g is holomor-
phic, i.e. 9|DT+E(zo)\{z} € %(DrJra(ZO) \ {Z})

By Cauchy’s Theorem 2.5 applied to g, we have

/ g(w)dw =0
Cr(20)

JRR S C
Cr(z0)

1.e.

w—z

Note that on C,(z) it holds that w # z, since z € D,(z). Hence

flw) 1
/CT(ZO) - Zdw = f(2) /CT(ZO) - Zdw

To finish the proof we only lack the following claim:

Claim. We state that the integral has the following form

1
/ dw = 21
Cr(zo) w—z




2.3. CAUCHY’S INTEGRAL FORMULAS 49

Proof of the Claim. Consider the following parametrization of C,.(zp)

v:[0,27] - C
t—y(t) = 2o + re”

Though, C,.(z) also has the following parametrization

7 :[0,27] — C

s> A(s) =z + p(s)e”

where p : [0,27] = R,s — p(s) = |y(t(s)) — 2| = |3(s) — z| with ¢ : [0,27] —
[0,27],s — t(s) as reparametrization of the control variable. Clearly p is smooth,
moreover

5(s) = ()€™ + ip(s)e’
We proceed now to develop the integral form above:

2T is . S
/ 1 mﬁz/ pls)e +ip(s)e®
Cr( 0

W2 p(s)e"

2m 27
—/ p(s)ds—i-i/ ds =
0 P(S) 0
—_——

real integral

= [In (,0(5))]22(2)7r +27mi =
—_————

=0

= 2m
since p(0) = p(27) O
We conclude illustrating some more the new parametrization we introduced.

V() = zg + e =z + p(s)e” = p(t(s) = Y()

Here t changes with s and p = p(s) = |y(¢(s)) — z|. As mentioned before

(s) = 2+ p(s)e”
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is the new parametrisation, with
o :[0,27] — [0, 27]
s+ t(s)
as the change of variable. Hence we have ¥y =~vyoo [l

Before we give important theoretical applications of Cauchy’s Theorem and the
Cauchy’s Integral Formula [2.6, we’ll look at one more example of contour shifting,
which helps us to evaluate certain integrals.

Definition 2.2 (Fourier Transform). For a function f € C¥, which is Riemann inte-
grable on every [a, b] and which has converging ffooo } f(t) ‘dt, its Fourier Transform

fo) = [ ra)emeas

is well defined for all £ € R

Example 2.3. We'll show that e~ s its own Fourier Transform. We want to show
that if f(z) = e ™ then f(§) = e~

We want to show that -
6—71'52 — / e—ﬂ'mge—%rifzdl,

—0o0

or equivalently

oo
2 _9mi 2
:/ e~ 27rz£x€7r§ dx

—00

© 2
/ e ™ dr =1

which we know from Real Analysis (see [EW22)]).

If £ =0, this gives

We first suppose that & > 0 and let f(z) = e ™ | then f(2) is entire and in particular
holomorphic in the piecewise smooth contour yg = 71 Wy W y3 Wy as in the picture.

—R+i¢ R+ i




2.3. CAUCHY’S INTEGRAL FORMULAS o1

Where ~v1 1s the path on the real axis, - s the right vertical path, s 1s the upper
horizontal one and 7y is the left vertical one. Hence, using Cauchy’s Theorem[2.5

/7 ()=

Note that on v;:

while on v3:

R R B
/ f(Z)dZ — / e*ﬂ(m+i§)2dx _ _/ e*ﬂ(:)’]2+2ﬂ-i$£)eﬂ'§2dx _ _eﬂ.£2 / eiﬂxzeizﬂ_médx
V3 R -R -R

As R — o0, the first integral over v, equals 1, while the integral over 73 gives

R
2 — 72 —9mi
_67r£ / e~ o 27rzz§dx

-R

On the other vertical side on the right we have
£ 3 . )
f(z)dz = / f(R+1i)idy = / e 2Ry =Yy,
Y2 0 0
For a fized &, the integral can be bounded using Proposition with

/fdz

where C' is a constant dependent on &. A similar bound holds for v4. Hence, as R — oo,
both integrals vanish to 0 and we obtain that

_ 2 _ 2
< & sup ‘e TR g —mikty oy
]

y€([0,€

< Oe—ﬂRz

0= hm f(z)dz = hm Z dz=1+0-—¢" / e ™ e y 4 ()
TR

—00

We therefore obtain that
e—7r€2 — / e—ﬂw26—2m‘x§dm

—00

Next we are going to see that Cauchy’s theorem and the Cauchy’s Integral Formula
will imply fundamental properties of holomorphic functions.

Namely, we are going to see that they are enough to prove:
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1. If Q C Cis open and f € (Q), then f' € (). Hence, f is infinitely often
differentiable.
Moreover, if zy € Q and r > 0 such that D,(z) C €, then f has a power series
expansion at zg, namely

Vz e D, ( Zanz—zo

ie. f € C¥(D,(2)), namely f is analytic in D, (z)
2. If f is entire, i.e. f € J(C), then f is constant.

3. The Fundamental Theorem of Algebra holds, i.e. any polynomial p(z) € C[z] of
degree n € N, has n roots in C (counted with multiplicity).

4. If f,g € () and f(z) = g(z) for all z in some sequence of distinct points with
a limit point in Q, then Vz € Q : f(2) = ¢g(2). In particular, if f, g agree on an
open set U of €2, then they agree on all of Q2

We start with the following Theorem:

Theorem 2.7. [SS10, Theorem 11.4.4] Suppose that 2 C C is an open set and
feA(Q). Let zp € Q and r > 0 be such that D,(z)) C Q. Then f has a power
series extension at zg

(0.]
Vz € D,.(2) : Zanz—zo
n=0

and the coefficients a,, are give by the formula

o f[n](zo) - L f(w)
VneN:a, = = ,/CT(ZO)—( dw

n! 2mi w — 2o)"t!

Moreover, the convergence of the series is absolute and uniform on D,.(zg)

Proof. Let z, and r be defined as above, so that D,(z) C Q. Fix s € (0,7) and let
Cs(29) be the circle of radius s with center z5. By setting v a path in D,(zy) such that
im(v) = Cs(20) C Q and using Theorem [2.6 we obtain

):%l%dw

for all z € Dy(2)
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Q

Cs(zg) € Di(zp)

The trick is to write

I 1 1 1
w—z (w—2)—(z—2) w—x 1— 2=

Since we are integrating on v, for w € im(v) (and for z € D;(zp)) we have for the term

in the last fraction that
z2—2| |z — zo| <1

w — 2o S

This means that we can rewrite the whole last fraction as a geometric series (see [EW22])

=2 (i)

w—2z0

for w € im(y) and z € Dg(z9). The convergence of the series is uniform, since the
bound 2= ZO' for =20 is independent of w € im(7). Hence we can interchange the series
and the 1ntegral (agaln see [EW22]), obtaining

= / flw < (= _Z?;iﬂ) dw =

= z— 2 nl —f(w) w =
- Z( )" 2mi /7 (w — zo)”+1d

n=0

8

an(z — )"

Il
=)

n

where we defined the a,,’s as

1
2mi J., (w — 20)" !

Hence, we have that in Dy(zg) the function f is the sum of the power series

[ee]
Z an(z — 29)"
n=0
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We have seen that series in their disc of convergence are differentiable with derivatives
given by termwise differentiation, as stated in Theorem [1.3] Hence, for all z € D(z)
we have

f(z) = Znan(z ) =
= Z(k + 1)ak+1(z — Zo)k

Being a power series, f'(z) is also holomorphic in Dy(zo), i.e. f'[p () € A (Dy(20)).
Inductively, we get that f is differentiable infinitely many times for z € Dg(z) and
evaluating it and its derivatives at z = zy gives

ao = f(20)
a; = f’(zo)

nla, = f7(z)

7 (z0) - - .
Hence a,, = £ n(,zo) is independent of s and we have )" a,(z — 2zo)" converging for all

z € Dy(z), this for any arbitrary s € (0,7). By taking the limit for s — 7 we notice
that v expands to C,.(zp), which is still in 2: the above calculations and step are still
valid, especially the uniform convergence of the series, also in this case is granted, as
|z — 29| < r. Viewing this as (constant for each z € Dg(2p)) continuous function of s,
we can extend by continuity to . This concludes the proof. O

Remark 2.5. In all these Theorems with {2 C C open by assumption, it always follows
by definition of open set in C that

Ir>0:D,(2) CQ

Moreover, the above proof of Theorem gives a method for determine the radius of
convergence of the series expansion of any f € (), as done above by expanding s
to r: we start by a fully contained Dy(z) C Q for some s € (0,+00) and progressively
increase it until we meet 0S), thus external boundary of the set or some singularity
points. As long as Dy(z) C , the success of the operation is granted.

Remark 2.6. Note that the proof also gives that if f is complex differentiable at zg,
then in facts it is complex differentiable infinitely many times at zy. It follows that for
every n € N
1 [n]
L1 fw) M)
270 J o, () (0 — 20)" ! n!

In fact we have
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Corollary 2.3 (Cauchy’s Integral Formula for derivatives). [SS10, Corollary I1.4.2]
If f € 2(Q), then f is infinitely often complex differentiable in 2 and in particular

Vn e N: fI"l e 22(Q)

Moreover, if z5 € 2 and r > 0 are such that E(zo) C Q, then

Vn € NVz € Dy(z) : f(z) = l'/ ﬂdw
(20)

27i (w— z)rtl

Proof. The fact that f’is complex differentiable (or holomorphic) follows from the fact
that, since Q is open, Yz € Q3r > 0 : D,(z) C Q. By Theorem f has a power
series expansion there, which is therefore holomorphic in D, (zp). Since power series are
infinitely often complex differentiable in their disc of convergence, we have that f is
complex differentiable infinitely often at zy. Since zy was arbitrary, f in infinitely often
complex differentiable in €2

To prove this, by induction on n € N, note that the base case with n = 0 is simply the
Cauchy’s Integral Formula in Theorem We are now going to show the induction
step, therefore suppose that

(n—11(,) — (n—1)! f(w) dw
fe) ' /Cr(zo)(

27i w — 2p)"

for any z € D,(z). For h € C small enough, so that z + h and z are both away from
Cy(20), we have

et h) = ) =) fw) LN P
3 T o /Cr(ZO) h ((w —(z+ h))n (w — z)n> d

We then use the equality (in C)

a®—b" = (a—0) (”2_: a"_l_kbk)

k=0
with a = m and b = L and take the limit as A — 0: note that % h=0, (wiz)z
and ZZ;& an_l—kbk hi) W, to get that
[n—1] h) — [n—1] — 1) 1
e (T L
h—0 h 2w Cr(20) (w— 2)2 (w — z)"~!

! F(w)

= A —
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Remark 2.7. Theorem[2.7 says that a holomorphic function f can be locally developed
as a power series around each point of the definition domain ). FExplicitly, for each
zo € Q, 3D, (%) C Q and a power series Y~ an(z — 20)", which converges for all
z € D,(zy) and represents the function f in D,(z)

Due to this power series expansion we have that holomorphic functions are exactly the
functions which are everywhere representable as a power series (with a positive radius
of convergence). Recall that any power series represents a holomorphic function in their
disc of convergence. This is why we have the words "holomorphic” and "analytic” used
interchangeably in various sources.

Note that the power series Y~ an(z — z9)" might not represent f(z) in all of Q, but
it represents it at least in a disc whose radius is the distance from the point to the
boundary of €2

Corollary 2.4 (Cauchy Inequality). [SS10, Corollary 11.4.3] With the assumptions
as in Theorem [2.3] we have for every n € N that

n!HfHOQCT(ZO)
/r-n

| (20)| <

where ||flloo,c,(:0) = SUPzeq, ) | £ (2)]

Proof. By Corollary [2.3] we have that
|
oy | )
|f (ZO)‘ o /Cr(20 (w_zo)n+1 w

)
| 27 16 )
- / Mirewde <
o1 0 (,,aeze)nJrl
nl (% }f(zo + rew)‘

2m Jo rr

do <

! [ flls,crz0)
2T rn

IA
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An immediate Corollary of these results is the remarkable Liouville’s Theorem.

is bounded, i.e. f € B(C), then f is constant.

Theorem 2.8 (Liouville’s Theorem). [SS10, Theorem 11.4.5] If f € 5#(C) and if f ‘

Proof. Since C is connected, it is enough to show that f* = 0 (Corollary [1.2).
Let zg € C, then for all » > 0 we have D,(zy) C C and since f is holomorphic on all of
C, we have by using Cauchy’s Inequality

‘f/<20)‘ < ||f||oo+(20)

By assumption f is bounded, i.e. 3M > 0Vz € C : |f(2)| < M, hence

M

Vr>0:|f'(20)| < —

”

By letting r — oo we get f'(z9) = 0 and since zy was arbitrary, we get that Vz € C :

f'(2) = 0 and hence f is constant. ]

Remark 2.8. The assumption that in Liouville’s Theorem[2.§ f has to be holomorphic

in all of C is essential, e.g. let @ = {z € C': Re(z) > 0} and f(z) = = on it.

Corollary 2.5 (Fundamental Theorem of Algebra). Every polynomial p(z) = ag+
Son_, axz® with deg(p) = n > 1 has precisely n roots in C, counted with multiplicity.
If these roots are wy, ..., w, (with possible repetitions), then

Proof. We first show that p(z) has a root in C for deg(p) > 1

By contradiction, suppose that there is no such root and that consequently the function

Q(z) = ;i € #(C)

e

If it held @ € B(C), then it would be a constant by Liouville’s Theorem 2.8 which would
then contradict that p(z) is not constant, i.e. deg(p) > 1 with p(z) = ag + >_,_, arz®
where a, # 0 and Vk € {0,...,n} :a, € C

Claim. Q is bounded, i.e. QQ € B(C)
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Proof of the Claim. For z # 0 we have

n
ag + E akzk
k=1

n—1
> Jan|l2” = lax||2]* >
k=1

n—1
> |2 <|an| -3 |ak||2|k‘”>
k=1

|z]—o00 |z|—

Hence |p(z)| —— oo and consequently |Q(z)| 2% 0, from this result we deduce
that Ir > 0: |Q(z)| < 1 whenever |z| > 7 (Q is a continuous function, i.e. Q € C°(C)),
but @ is continuous and hence bounded on the compact set D,(0), say |Q| < m for
some m € R

p(2)] = >

Choose M := max{m, 1}, then
VzeC:|Q(z)| < M
Hence @ is constant by Liouville’s Theorem O

This contradicts the assumption that p is non-constant and hence proves the existence
of one solution by contradiction.

Hence p has a root, say w; € C. Then by writing z = (z — w;) + w; we have

p(2) = ao + Zak((z —wy) + wl)k =

k=1
= by + Zbk(z — wl)k
k=1

using the Binomial Theorem [EW22], new coefficients b,,_1, ...,by and b, = a,. Since
p(wy) = 0, we must then have by = 0

Hence
p(z) = (z —w1) (Z b(z — wl)k1> = (2 —w1)p(2)

where p is a polynomial with deg(p) = n — 1. By induction on the degree of the
polynomial we get the result. O

Next we discuss the principle of analytic continuation (of identities), which states that:
if 2 is open and connected, f € J#(2) and f vanishes on an infinite set 2 of distinct
points with a limit point zy € Q \ £, then f = 0.
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Remark 2.9. 1. Holomorphic functions can have infinitely many zeroes, but we we
are going to see that these zeroes are isolated, i.e. for each zero zy of a holomorphic
function f there exists a neighbourhood of zy with no other zero.

E.g. cos(z) and sin(z) have respectively zeroes for z = (2k+1)% and z = 7k, with
keZ

2. There are holomorphic functions with no zeroes.

E.g. the constant function c or the complex exponential e* are examples of func-
tions with no zeroes.

We start by the definition of a limit point.

Definition 2.3. An element z; € C is a limit point of a set (2, if

Hznnen- € (Q\{z0})" ¢ lim 2, = 2

Hence, it holds that Ve > 0: QN DE(ZO) # () and that Vn € N* : z,, # 2

Example 2.4. If Q = [—1,1] U {2i}, then the z, # zy condition avoids the case 2i is a
limit point of €1, since otherwise we could take ¥n € N* : z, = 2i

We next define the order of zero of f at zg

Definition 2.4. Let @ C C be open, f € () and 2z, € €, then the order of
zero of f at z; or order of vanishing of f at 2, denoted by ord,,(f) or n.,(f)
or v,,(f), is either oo, if V& > 0: fI¥l(2,) = 0 or it is the smallest integer & € N such
that f(z0) = f'(20) = ... = fF"U(2) = 0 and f¥(2) # 0. If f(2) # 0, then k = 0.
Therefore, we define it as follows:

ord,, (f) = { min{k € N: fF(z0) # 0} {k € N: fH(z)

o) #0} #0
- 0 ,{keN:f[kl(zo)7é0}:®}GNU{OO}

We have the following result

Proposition 2.2. [SS10, Theorem III.1.1] Let @ C C be open, f € () and
zg € €.

(i) If ord,,(f) = oo, then Ir > 0: D,(2) C Q and
Vr >0:D.(2) CQ=Vz€ D,(%): f(z)=0

i.e. f is locally zero around z.
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(ii) If ord,, (f) # oo, then Ir > 0: D,(z) C 2 in which
3k € (D, (20))3n € NVz € D,(20) : f(2) = (2 — 20)"h(2)
where h(zy) # 0 and n = ord,,(f)
(iii) For any f,g € () we have

ord,, (f + g) > min{ord,,(f), ord,,(9)}
ord.,(fg) = ord.,(f) + ord.,(g)

Proof. (i) Let f be holomorphic in {2 with { open. By Theorem and using that
Q is open, Jr > 0 is such that D,(zp) C 2 and on it we have

< (5
VZEDT(Zo)if(Z):Zf n(! )

n=0
Since ord,,(f) = oo, it holds that ¥n > 0 : f"l(2)) = 0. Hence Vz € D,(z) :
f(z)=0
(ii) If ord,,(f) # oo, then by definition
Jk eN: f(z) = ... = fFU(2) =0 and f¥(z) #0

Again, using Theorem and the fact that Q is open, Ir > 0 is such that

D, (z9) C 2, then for all z € D,(zp) we have the power series representation

(z—20)"

Hence, if we define
o plmtk]
Vz € Dy(2) : h(z) := Z f(—(ol)(z — )"

Then h € (Dr(zo)), since it is given by a convergent power series and also
h(zo) = &(,ZO) #0, as (z — 29)" = 0 if and only if m > 0
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(iii)

Note that, since h € (D, (z)), it is also continuous there and since h(zy) # 0,
it holds that
Jde € (0,7)Vz € D.(29) : h(z) # 0

Moreover, h and n are unique, since if we assumed not, hence
f(z) = (2 = 20)"W(z) = (2 = 20)"g(2)
with f, g holomorphic and h(z) # 0, g(z0) # 0, then if m > n we would get
f(z) = (2 = 20)"(z = 20)™ "9(2) =
= (2 = 20)"(2)

and for z # 2, that

h(z) = (z = 20)" "g(2)
Now, taking the limit on both sides as z — 2z gives h(zp) = 0, which is a
contradiction, therefore m = n. Then h(z) = g(2)

Note that for any £ € N
P (z0) + g™ (20) = (f + ) ()

Hence, if fI¥(z) = 0 = gi*(2), then also (g + f)¥(2) = 0. This implies that
ord.,(f + g) = minford.,(f), ord=(g)}

By part (ii), instead, we write

f(z)=(z— zo)ordzo(f)hl(z)
g(z) = (2 — zo)ordzo(g)hg(z)

with Vz € D,(29) : h1(2) # 0 and hy(z) # 0, then
fg= (2 = 20) o DHerdOn, (2)hy(2)

with (hihs2)(20) # 0 From this, using the power series expansion of fg or the
uniqueness of n and h in part (i) we get

ord,, (f) + ord,,(g) = ord,,(fg)
O

As Corollary we get that the zeroes of an holomorphic function are isolated. More
precisely we have

Theorem 2.9. Let 2 C C be open, f € 7(12) and z, € Q. Assume f(z) =0, i.e.
ord,, (f) > 1. If ord,, (f) # oo, then

36 > 0Vz € Ds(20) : f(2) #0
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Proof. Using Proposition we have that 3r > 0 : D,(z) C Q in which we write
flpyzo) (2) = (2 — 20)"h(2) with n = ord,,(f) and h(z) # 0. Let 2 € D,(20), then

f(2)=0<=h(2)=0

since (z — zp)"™ # 0 for z # 2
Being h(zp) # 0 and h is continuous on D,(z), we have that

30 € (0,7] : |z — 20| < d = h(2) #0

0

By the equivalence previously stated we have that

Vz € Ds(z) : f(2) #0

Now we can state the Principle of Analytic Continuation?|

Theorem 2.10 (Principle of Analytic Continuation). [SS10, Theorem I1.4.8] Let
) C C be a region and let f € (). Let Z C Q be an infinite set with a limit
point zg € 2, but 2o ¢ 2. Then

(Vzeﬁf:f(z)=0>=>f:0

Before we give the proof, we record the following immediate Corollary.

Corollary 2.6 (Identity Theorem). [SS10, Corollary I1.4.9] Let 2 C C be a region
and () # U C € be one of its open subsets. Suppose f, g € #(Q), then

(VzeU: f(z) =g(z)) = (V2 € Q: f(2) = g(2))

This holds more in general for a sequence (2, )nen- € 2 of distinct points with

2Tt is useful to this purpose to recall the definition of a region in C, see m
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limit point lim,,_, 2, =: 29 € € such that zg ¢ 2

Proof. Apply Theorem to f — g to obtain this result. O]

Note that if U C 2 is open and non-empty, then Jr > 032y € U : D,(29) C U and the
sequence {2 + 5 }52; in Dy(20) C U has a limit point 2y € Q\ {20 + 75 }0%;

Remark 2.10. 1. The reason this result is called Principle of Analytic Continua-
tion [2.10 is the following:

If f € 2(Q2) with a region 2 and Q C Q) is again a region, then there is at most

one f € #(Q) such that Vz € Q : f(z) = f(;) When such a function f exists,
we say that f has analytic continuation f to ()

Note that if g € H(Q) is such that Vz € Q : g(2) = f(z). Then Vz € Q :
f(z) —g(z) =0, hence Vz € Q : f(z) — g(2) = 0 by the above Theorem .

Therefore f is unique.

2. The assumption that Q is connected is essential, since if Q = Q,UQy with Qy # 0,
Qy # 0 and Q. N Qy = 0, then one can define f,g : Q@ — C by fl, =1 and

fla, =0 and g = 0. Then even though f|,, = glg, coincide in Qy, f and g do
not coincide in )

3. The condition that the limit point of zeroes is in ) is also crucial, as shown in
the following Example 2.5

Example 2.5. Take 2 = C* and

f:Q—=C

in —ir

A e: —e =

Zz—=sinl—) = ——
z 217

It holds that f € S(C*) and f # 0, since already f(i) = €54~ # 0

21
Consider a sequence of zeroes given by {+ }pens withlim, o £ =0, as () = sin(mn) =
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0 for all n € N*. The limit point of zeroes is not in €2, causing the result. This example
shows that the zeroes can converge to a boundary point. Note that we do have that the
zeroes {L}nen- are isolated.

Another interesting example regarding the above concept of continuation is given here
at Example 2.6

We are now going to prove the following theorem, which proves Theorem [2.10]

Theorem 2.11 (Principle of Analytic Continuation alternative version). Let © be
a region, f € J(Q)). Then the following are equivalent:

(i) f=0
(ii) 3a € Q¥n € N: fll(a) = 0
(ili) Zf:={z € Q: f(2) = 0} has a limit point in

An immediate Corollary of Theorem [2.11] is

Corollary 2.7 (Identity Theorem alternative version). Let Q2 be a region in C,
f,g € (). Then the following are equivalent:

(i) f=g
(ii) Ja € QVn € N: fIMl(a) = gi"l(a)

(iii) {z € Q: f(2) = g(2)} has a limit point in {2

Proof of Theorem [2.11]. Clearly (i)=(iii), since by assumption {z € Q: f(z) =0} =
Q. In the following, we will prove (iii)=(ii)=(i):

(iii)==(ii): Let Z;y := {2 € Q: f(2) = 0}. By assumption Z; has a limit point
a € Q. Since (2 is open, let 7 > 0 be a radius such that D,(a) C 2. We also have
that f is continuous and using that a is a limit point in Zy, i.e.

N
zn)nen € (Zr\{a})" : lim z, = a
by continuity of f we have that

0= Tim f(z) = f (lim z) = f(a)

n—oo
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Claim. [t holds that ¥n € N: fl"l(a) = 0

Proof of the Claim. Suppose on the contrary that
In e NV € {0,....,n — 1} : f(a) = 0 but fM(a) #0
Then as in the proof of Theorem since f is analytic in D,.(a) C , i.e.
fecw (Dr(a)), expanding f in a power series there
Vze Dy(a): f(2) =) ar(z—a)"
k=n

we have that by Proposition

f(z) = (2= a)"g(2)
with g(a) # 0 and g is analytic in D,(a), i.e. g € C*(D,(a))
Since g is continuous, Je € (0,7) : D.(a) C D,(a) such that Vz € D.(a) : g(z) # 0,
then
fz)= (z=a)" - g(z)
N—— ~~~

#0 on Do(a) #0 on De(a)

Therefore f(z) # 0 on D.(a). Hence Z; N D.(a) = (, but this says that a is not
a limit point of Z;. Hence Vn € N : fl"l(a) =0 O

(ii))=>(i): Let A := {z € Q: (VneN: fll(a) =0)}. By assumption a € A4,
hence A # (). We will show that A = 2 via the characterisation of connectedness,
hence that f =0

Recall: for an open subset €2 C C, connected means that the only both open and
closed subsets of 2 are () and (It is not possible to find two disjoint non-empty
open sets 1, {25 such that Q = Q; U ().

Since A # (), if we can show that A is both open and closed, then A = Q. Hence:

A is open: To see this, let ¢ € A and let r > 0 such that D,(c) C . Then
by Theorem

Vze D,(c): f(z) = Zan(z —o)"

with

f(e)
n!

since ¢ € A, hence f|DT(C) = 0. This means that D,(c) C A. Hence, for an

arbitrary ¢ € A, we found a neighbourhood D, (¢) C A, which shows that A

is open.

=0

Ay —
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A is closed: We want to show that if {zj}ren+ is a sequence of points in A

such that limyg_,., 2 = ¢ € 0, then ¢ € A, i.e. A contains all its limit points.
Let ¢ € Q be a limit point of a sequence {zj }ren+ in A. Then for any k € N*
and n € N, it holds that

fM(z) =0
by definition of the set A. We though have that f[" is continuous, hence

_ 71 [n] — il (75 — fln]
0= lim f () = f (1}1_%0 Zk:) = f"(c)

Since n € N was arbitrary, we obtain that f™(c) = 0 for every n € N
and therefore ¢ € A. It follows from this that A is closed in €2, given that
arbitrariness of c € A

]

Remark 2.11. 1. (a) The Identity Theorem (2.7 makes it clear that the real func-

(b)

tions
sin, cos,exp : R — R

can be uniquely extended to complex numbers, via their form on the real line.

E.g. sin(z) and cos(z) are entire functions. For any z = x € R we have that
sin®(z) + cos?(z) = 1. Thus we define f € C, 2z — f(2) = sin®*(2) + cos?(z2)
and g € C®, 2z — 1. Since f and g agree on the real line, they have to agree
on all of C, from which

Vz € C :sin?(z) + cos?(z) = 1

The functional equations can also be transferred from reals to complexr num-
bers.

E.qg. from
Va,y € R:exp(z +y) = exp(z) exp(y)

we first conclude
Vy € RVz € C: exp(z + y) = exp(z) exp(y)

and the another application of the Identity Theorem gives

Vz,w € C: exp(z + w) = exp(z) exp(w)

General case: Let Q) C C be a region which contains a set U C €, which itself
contains a sequence of points with limit point also in U. Let F(z,w) be a function
defined for z,w € Q such that F(z,w) is analytic in z for any w and vice versa.
If F(z,w) = 0 whenever z,w € U, then Vz,w € Q: F(z,w) =0
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2. The geometric series for z € D1(0) is given by:

n=0

1

—z

has analytic continuation to C\ {1} given by f(2) = 5

Q, €y = Dy(0)
C\ {1}

\
AY
/
7/
Q
[N)
Il

We have g : 1 = C,z—= > 2" and f: Q D = C,z 1—; Therefore, if

z € D1(0), we then have
1
f(z) =g(z) = 1--

Example 2.6. Let Q = D1(0), then it holds that

VzGQ:f(z):ZZ”

n=0

f converges on D1(0) and defines a holomorphic function there. Note that for z = 1,
f(z) does not converge, hence for any ¢ > 0, we cannot define f(z) as > .~ 2" on
D14.(0), since any such disc contains z = 1

Let Q = C\ {1}, then Q C Q and F(z) = == is defined on all of Q and it agrees with

1-z
Sone 2" whenever z € Dy(0), so F(z) = L is the analytic continuation of f to C\{1}

Warning: This does not say that I represents y 2" on the complement C\ D;(0).

Note that in the Identity Theorem we have two holomorphic functions defined on
the same set . Here we have instead:

f:Dy(0)—C F:C\{1}—=C

> 1
z»—>Zz” Z
—~ 1—=z2
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Remark 2.12. Not every holomorphic function f: ) — C can be extended to f:Q—
C, with Q C Q

Example 2.7. On D;(0) it holds that

HOED DL

converges by comparison to the geometric series, since |z|" < |z|*. When we look at
series of holomorphic functions, for any e > 0 we see that Y~ 2™ converges absolutely

and uniformly on compact subsets of D1_.(0), but f cannot be extended anywhere beyond
D, (0)

Here is another Corollary of the Identity Theorem [2.7

Theorem 2.12. Let f,g € () with © open and connected. Then

fg=0= f=00rg=0

Proof. Suppose without loss of generality f # 0, we want to show that g = 0 (otherwise
by renaming of the functions, it falls under this same case).

Since f # 0, s0o Ja € Q: f(a) # 0. By continuity of f, it holds that
Je>0Vz € D.(a) CTQ: f(2) #0
The assumption
VzeQ: f(2)g(z) =0
then implies that Vz € D.(a) : g(2) = 0. But then

91p.(a) = Olp. =0

Using the Identity Theorem applied to g : 2 — C and the zero function 0 : Q —
C,w — 0 gives
g|Q = O|Q =0
]
Remark 2.13. The analytic functions on a non-empty open subset 2 C C, namely

H(Q), form a commutative ring with 1. This since the sum and product of holomor-
phic functions are holomorphic.
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Recall: (R,+,-) is a ring with 1
e (R,+) is an abelian group.

w@o»

e R is a monoid under “7, i.e.

— Va,b,c € R : (ab)c = a(bc)

—dlgpeRVae R:a-1p=1-a
o “7 distributes over “+7, i.e.

— Va,b,c€ R:a(b+c) =ab+ ac

— Va,b,ce R: (b+c)a=ba+ca

The last Theorem says that if Q is open and connected, then the ring of analytic
functions on it has no zero divisor, hence is an integral domairﬂ

Our next application is the Morera’s Theorem, which is a converse to Goursat’s Theo-

rem 2.1

Recall: Goursat’s Theorem says the following: let f : 2 — C for 2 open be a
holomorphic function and let 7" in €2 be a triangle, whose interior is also contained in

Q, then
/ f(2)dz=0
T

Theorem 2.13 (Morera’s Theorem). [SS10, Theorem IL.5.1] Let 2 C C open and
f e C%N;C). Assume that for any open disc D with D C Q and any triangular
path T such that im(7T") C D we have that

/ f(2)dz=0
T
Then f € (), i.e. f is holomorphic on {2

Proof. Let 2z € Q and r > 0 such that D,(z) C Q. For z € D,(z) we define

F(z):= /’yZ::Z[ZO’Z] f(w)dw

3In algebra, an integral domain is a non-zero commutative ring in which the product of any two
non-zero elements is non-zero. Integral domains are generalizations of the ring of integers and provide
a natural setting for studying divisibility. In an integral domain, every non-zero element a has the
cancellation property, that is, if a # 0, an equality ab = ac implies b = ¢
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where 7, : [0,1] = C, z +— (1 —t)z0 + 2t is the line segment joining zo to z. Then for a
small enough h € C such that z + h € D,(z), it holds that

F(z+h) — F(z) = / Fw)duw
=L, 24 n)

where o is the linear path linking 2 and z + h. Since by assumption

/T f(w)dw =0

for any T in D,(zy), in particular for im(T") = (29, z, z+h), we state the following claim.

Claim. Using continuity of f at z one can show that

hmF(z—f-h)—F(z)

h—0 h

= f(2)

Proof of the Claim. Consider the difference
Fetm=FE) = [ (flw) = 1)+ f(:))dw =
[z,24h]

~ f(2) / e / () - s

and the estimate obtained from [1.10] (iv), namely

< sup [f(w) = f(z)|h

WEL, 1)

/ (f(w) — f(2))dw
Lz z4n)

It follows that

< sup  [f(w) = f(2)|

wEZ[27z+h]

- f(2)

‘F(z+h)—F(z)
h
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Since f is continuous at z, it holds that

sup [ f(w) — f(2)] =% 0

weé[z,z«kh]

and thus finally

i LEHN ZFGE) (f@)%) Flim sup | f(w) — £(2)] = (2)

h—0 h h—0 h—0 WEL, ,4p)

so F' is holomorphic on D, (z), but then F’ is also holomorphic on D, (z), by Theorem
2.3 Since F” = f, it follows that f is holomorphic on D,(z) as above, but then f is
holomorphic on all of €2, as zy € () was arbitrary. O

2.4 Sequences of holomorphic functions

It is known from Real Analysis that pointwise convergence of a sequence of functions
leads to pathologies, such as the pointwise limit of a sequence of continuous functions
not being necessarily continuous.

To avoid this we used a stronger form of convergence: the uniform convergence. For
example, the limit of a uniform convergent sequence of continuous functions is contin-
UOUS.

We also have that uniformly convergent sequences of integrable functions converges to
an integrable function.

Hence, uniform convergence of sequences of functions has better stability properties.
Uniformly convergent sequences of differentiable functions do not necessarily have dif-
ferentiable limits, though.

In this regard we are going to see that sequences of complex functions have much better
stability properties. As in the real case, the uniform limit of a sequence of continuous
functions is continuous and similarly line integrals of a uniformly convergent sequence
of functions converge to the line integral of the limit function.

Definition 2.5. A sequence (f,)nen: € (CQ)N* of functions defined on an open set
Q) C C is called uniformly convergent in ) to the limit lim,_,. f, = f € C%, if

Ve > 0IN € NVn > NVz € Q: |f(2) — fulz)| < ¢
<:>nli_>n(r>108up{|f(z) — fa(2)] :z€Q} =0

Alternatively, such a sequence is denoted as f,, = f or simply f, = f

n—oo
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Note that in this definition, N does not depend on z, rather only on &

It turns out that we only need local uniform convergence or equivalently uniform con-
vergence on compact subsets.

Definition 2.6. Let 2 C C be open and (f,)nen+ € (CQ)N* a sequence of functions.

(fr)nen+ € (CQ)N* is called locally uniformly convergent or compactly con-
vergent or uniformly convergent on compact sets, if the following equivalent
conditions are satisfied:

(i) Va € Q3e > 0: D.(a) C Q2 and <f”|Dg(a)> converges uniformly in D.(a)

neN*

(ii) VK C Q compact : (fulg), oy converges uniformly in K

Remark 2.14. Note that the previous conditions are equivalent.

(i)=>(ii): since K is covered by finitely many discs in (i).

(i)==>(ii): since ) is open, for all a € Q there is a closed disc D, i.e. compact, such
that a € D C Q

Remark 2.15. Note that since continuity is a local property even in the case of real
valued functions, local uniform convergence of continuous functions will imply continuity
of the limit function.

Hence, similarly to the real case one can show that:

Proposition 2.3. Let 2 C C be open and (f,)nen+ € (C’O(Q;(C))N* a sequence
of continuous functions. If (f,),en+ converge uniformly to a function f in every
compact subset of €, then f € C°(Q;C)

With this result in mind we continue to the main Theorem that we have in this section.

Theorem 2.14. [SS10, Theorem I1.5.2] Let 2 C C be open and ( f,;)nen+ € (%(Q))N
a sequence of holomorphic functions. If (f,),en+ converge uniformly to a function
f in every compact subset of Q, then f € J2(Q)

Proof. Since each of the f,,’s is holomorphic, they are all also continuous, hence by the
above Proposition [2.3] their limit f is also continuous.
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To show that f is also holomorphic we will use Morera’s Theorem [2.13| and the fact
that the set described by any triangle 7" is compact.

By Morera’s Theorem [2.13] since f is already continuous, to show that f is holomorphic,
it is enough to show that
| swyn -
T

for any open disc D such that T'C D C ) and where T is a triangle contained in D

Let D = D,(zp) C Q an open disc in §2 for a zg and a r > 0. Let T" be any triangle with
inside contained in D. By Goursat’s Theorem [2.1] we have

Vn >1 :/fn(w)dw:O
T

since f,(z) — f(z) uniformly on compact sets. Being the set described by T' compact,
we have that f,(z) — f(z) uniformly on it, so
< [ 1) = 5ol lael <

/fn dz—/f )dz
<sup|fu(2) = f(z2)| L ——=0-Lr =0

n—o00
zeT

for Ly € R the length of the perimeter of T and since (f,,)nen+ converges uniformly on
the set delimited by 7. We hence have that

lim fn dz—/f

n—oo

and therefore, we obtain

!wamzz

and so finally f € 72(Q), using Morera’s Theorem to conclude the proof. O

We can extend the previous result to the following generalisation.

Theorem 2.15. [SS10, Theorem I1.5.3] Let 2 C C be open and ( f,;)nen+ € (%”(Q))N*
a sequence of holomorphic functions such that f, = f, i.e. f,, converges uniformly
to f, on every compact subset K C Q.

Then (f})nen € (A (Q))N* converges uniformly to lim, , f;, = f’ on every com-
pact subset of €2




74 CHAPTER 2. CAUCHY’S THEOREM AND ITS APPLICATIONS

Proof. Let z € 2 and r > 0 such that D, (2) C €, then (f,)nen- converges uniformly
to f also on D,(zg) as subset of €

Let s > r such that Ds(z) C Q and o := "2 € (r,s). We have then by the Cauchy
Integral Formula for derivatives [2.3] that

o L[ W)
F(z) = 21 /Ca(zo) (w — z)2d

for every z € D,(2) C D, (). Hence for z € D,(z) we have

1 — 1
_/ de‘ < _(277'0-) sup
211 Cy(20) (UJ — Z) 2 w€Cs (20)

1fn(2) = F'(2)| =

To bound the denominator for both w € C,(2y) and z € D,(z), it holds that

lw—z|=|w—20+20— 2| = |w— 20— (2 — 20)| > ||[w— 20| = |2 = 2|| = |0 — 7]

Hence, we conclude that

|n(2) = f'(2)]

IN

(‘7 - T)2 weECoy(20)
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and since f,, = f on the compact set C,(zp), we have that f/ = f’ on D,(2)

Since by definition every compact set is contained in a union of finitely many such discs,
the result follows. O

These Theorems are often used to prove holomorphicity of functions defined by infinite
series.

Corollary 2.8. Let Q2 C C be open and (f,)nen+ € (%”(Q))N*, if
VzEeQ: F(z) =) ful2)
n=1

we then let Sy(z) = 320 f,.(2) and so Sy is holomorphic. If the sequence (Sy)yen-
converges uniformly on compact subsets of €2, then limy_,o Sn(z) = F(2) is also
holomorphic.

Proof. This Corollary is a direct consequence of the previous Theorem [2.15| applied on
the sequence (Sy)yen+ defined as follows: for each N € N*

N
SniQ—=Cze Sy(z) =) ful2)
n=1

]

For series of functions, we have also the following useful Theorem of Weierstrass, called
Weierstrass M-test.

Theorem 2.16 (Weierstrass M-test). Let (f,)nene € (CQ)N* be a sequence of
functions and () # U C Q. Suppose that

(M, )nen+ € (RZO)N* : (‘v’n e N'Vz e U : ‘fn(z)‘ < Mn> and Z M, < oo

neN*

Then ) . fn converges absolutely and uniformly on U

Proof. Let z € Q and consider N € N*, then

N

Sl <YM,

n=1
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by then taking the limit on both sides one gets

00 N N 00
;|fn<z>| = ngaam;fn(zn < Nnggon;Mn = ZJM < oo

Hence, ( f n\)neN* convergence absolutely and hence also in the normal sense, but being
(M,,)nen+ independent of z, then also uniformly. The arbitrariness of z and N give the
result. O]

Example 2.8. For z = x4+ 1y € C with z,y € R and n € N the function z — n* :=
exp(zlog(n)) is an analytic function on C

T

In®| = ’ exp ((z + iy) log(n))‘ = exp (zlog(n)) =n

Then we have

Proposition 2.4. [SS10, Proposition VI.2.1] The series that represents the Rie-

mann Zeta function
=1
((2) = 2 =

converges absolutely and uniformly on every half plane

Us:={z2€C:Re(z) >1+0} with § >0

and is holomorphic in {z € C: Re(z) > 1}, i.e. ( € #({z € C: Re(z) > 1})

Proof. For each ¢ > 0 it holds that, given
Re(z)=0>1+d6>1

the series ((z) is uniformly bounded by

e}

1
Z PETIE
n=1
since
RS R I N T PR
N =120 0| = 2 g < |2 | S 2 s <0
Applying the previous Weierstrass M-test we obtain the result. O]

Hence >_°° . L converges uniformly on every half plane as V6 > 0 : Re(z) > 144 > 1

n=1 nz
and therefore defines a holomorphic function if Re(z) > 1 (every compact subset of

{z € C: Re(z) > 1} is contained in such a half plane in which Re(z) > 1+ 0).
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Definition 2.7. For z € H := {z € C: Im(z) > 0} C C (note that H is open), we
define the Theta function

f-H—C
PN 9(2,) — ZQQﬂinzz =142 Z e27rin2z
neL n=1

A basic result for it is the following.

Proposition 2.5. For all z € H, the function 6(z) is well defined, i.e. the series
converges and defines a holomorphic function there.

Proof. We are going to show that 6 converges uniformly on any subset of the form
Hs := {z € C: Im(z) > 6} € C with § > 0. Since any compact subset of H is
contained in such a set, by Theorem this will imply the result.

Let 6 > 0, for any z € Hs with z := 2 + 7y and y > 0 > 0 it holds that

Vn e N : |e27rin22’ — |€2ﬂ'in2x‘ _|€727rn2y’ — 6—27rn2y < efgﬂ-ny

=1

Since y > 6, it holds that e 2™ < e72™% < 1. Hence

oo oo
Ly _
E 62mn z S § e 27nd < 00

geometric series

Hence, Y >, e2min’ converges uniformly on Hys for any 6 > 0 and therefore also on
every of their compact subset. Thus it defines a holomorphic function on H, as argued
above. O

Example 2.9 (Fourier analysis and the Theta function). The Fourier Transform serves
as important tool to Number Theory, in this settings we can think of the Theta function
as such a transform of a certain function. The uniqueness of the coefficients of this
transform allows the Theta function to identify the squares, for instance. So,

[ 00 1 , M = 0
1+ QZ 2mintE — Za(m)e2m”2z — a(m) =< 2 , mis a square
n=1 n=0 0 , else
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A more remarkable result is obtained when looking at, for example

0*(z) = Z Z Z Z p2mi(ni+nitni+nd)z _ i B(m)e2mim
m=1

N1EZ no €L n3EL nyEZ

Here is interesting that
B(m) = #{ny,ny,n3,ny) € Z* : (n? +n2 +n3 +n? =m}

Remark 2.16. We are going to come back to ((s) and 0(z) in Chapter 4: there, we
are going to use 0(z) to show that ((s) (which is defined as the series Y ., = for

=1ns
Re(s) > 1) has an analytic continuation to C\ {1}. There we are also going to show
the relation between these two functions allows the following identity:

n7T(2)¢e) = %/Ooo (0(it) - 1)té%

for Re(z) > 1. One can show that in fact the RHS makes sense for any z € C\
{0,1}, this gives the analytic continuation of (. The latter identity is known as Mellin
transform.

2.5 Holomorphic functions defined in terms of inte-
grals

Finally, we also have a similar Theorem for functions defined in terms of integrals, i.e.
similar to the Theorems for functions defined in terms of infinite series.

Many special functions in mathematics are defined in terms of integrals of the type

F(2) = / F(e, )t

or as limits of such integrals.

Example 2.10 (I" representation as limit). Consider in this sense

€

[(2):= lim [ e 't*'dt

e—o0 1
€

We have the following Theorem

Theorem 2.17. |[SS10, Theorem I1.5.4] Let 2 C C be open and I = [a,b] C R a
compact interval. Let F':  x I — C be a function with the following properties:

i) FelC’(Qx1I)
(i) Ytg € I: fi,(2) := F(z,1ty) € ()
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Then the function f defined by the following integral is holomorphic on €2, hence

f(z) = / F(z,t)dt € A#(Q)

Proof. The idea is to use the Riemann sums to approximate the integral: let

n—1

)i Y (s )

7=0

then f,(2) is a finite sum of holomorphic functions, hence holomorphic.

We want to show that (f,)n,en+ converges to f uniformly on compact subsets. Then
using Theorem [2.15| we can conclude that f is holomorphic.

Let K C €2 be compact. We use that a continuous function F' : Q x [ — C, when
restricted to the compact set K x I, is uniformly continuous.

Hence

Ve > 036 > OV(Zl,tl), (Zz,tg) e K x1:

(|21 — o] < 6 and [ty — ta] < 6) = [F(21,11) — F(22,12)] < —

b—a

Let now n € N* be such that =2 < 0, then let z € K and consider

il a+(j+1)b*7“ _
fn<z>—f<z>=2/+,b_a (F(Z’aﬂbna)— F(z,t) )dt
j eI N D

7=0 ~  dependent of t

TV
independent of ¢

using
b n-l  eat(j+1)=2
f(z):/ F(z,t)dt:Z/ L Pzt
a =0
and

§=0
n—l o eat(j+1)2 a

= / F(z, a+j )dt =
=0 a+j7
nzl F(z,a+ j&2)

o b—a
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since the integrand is independent of ¢ in the second last equality.

Now, for t € [a—i—jb%‘l,a—l— (7 + 1)%], it holds that ‘t— (a+jb77a)‘ < 2 < §and

since the “z-arguments” are equal, we also have 0 = |z — z| < 0. Hence

b—a €
F — | — F(z.t
a2 rie] <

and finally

fule) — fR) < Yt = St

n

which gives the uniform convergence of f, to f on K, since z was arbitrary in that set.
Being K arbitrary we obtain by Theorem that f is holomorphic. O]

Remark 2.17. With some more work one can also show that f' is given by

b b b
VzEQ:f’(z):d%/ F’(z,t)dt:/ dile(z,t)dt:/ F/(2,t) dt

=fi(2)
In other words, we can interchange integration and differentiation.

Remark 2.18. Many special functions that appear as solutions of differential equa-
tion, for example Bessel functions, have integral representations,e.q. J,(z) is defined as
solution of Bessel’s complex differential equations:

*f(z) | df(z)
e dz? +2 dz

+ (2 =nHf(z) =0

Forn € 7Z, it holds that

1 L )
Jn(z) / et sm(t)e—zntdt

:% -

1 L
and Jo(z) / e=sin() gy

" or

-7

with F(z,t) = €#™® s continuous on C x R. For each t € [—m, 7| it holds fi(z) =
e’zsn(®) . C — C is holomorphic. Hence the function [" e dt is holomorphic on C
and by the previous Theorem |2.17, it results that

1 T
Jy(2) = / e (i sin(t)) dt

=5 B



Chapter 3

Meromorphic functions and
Residue Formula

The goal is to extend Cauchy’s Theorem and the Cauchy Integral Formula from
holomorphic functions to functions which might have singularities.

Recall: Cauchy’s Theorem states that for any f € 2(Q2), any closed curve v such
that the image of the curve and its interior are both contained in {2, we have

A F(2)dz =

The Cauchy Integral Formula states instead that for any z € D C €2, with D a disc,
such that 0D =: C' and for any f|, € (D), we have

_ L fw)
Z)%/Cw—zdw

To this end, we are first going to look at isolated singularities of a function f. We will
see that there are three prototypes for these:

e removable singularities
e poles
e cssential singularities

given respectively by the following functions at z = 0: =2 Z), 1 ex. For instance, for the

first function it holds that

n2n

sin(z >
nz 2n +1)!

81
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shows that z =0 is a removable smgulamty One can view the RHSH as an analytic
continuation to all C of the LH sz For the second function we have

whereas for the third function |ez

oscillates. In fact,
. .. 1, z\0
e if 2 — 0 on positive real numbers, then |ez| —— oo

e if 2 — 0 on negative real numbers, then |ez| 2= 2700

These three examples of singularities are what we call a removable singularity, a pole
and an essential singularity respectively.

We will prove a generalisation of Cauchy’s Theorem to functions that are holomor-
phic except for finitely many isolated points. This will lead us to the

Residue Formula: if f € 5#(Q) for an open 2 containing a circle C' and its interior,
except finitely many points z1, ..., 2z, with n € N inside C', then

N
/ f(z)dz = 2mi Z Res,, (f)
a—1
where we will also see that f in a neighbourhood of zy has the form

f +Z Z—ZO

where G € (D, ())

This Theorem, like Cauchy’s Theorem can be used to evaluate many real integrals
and complex line integrals. It will also lead to many theoretical results just like Cauchy’s
Theorem 2.5 did.

Argument principle: which allows us to count the number of zeroes (and poles) of
holomorphic (meromorphic) functions inside closed curves.

Rouché’s Theorem: a holomorphic function can be perturbed slightly without chang-
ing the number of its zeroes.
Let f,g € 2(Q2) with Q open and containing C' and its interior. If Vz € C : |f(2)| >

1Short form for: “Right Hand Side”
2Short form for: “Left Hand Side”
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lg(2)|, then f and f + g have the same number of zeroes inside C'

Open mapping Theorem: let f € J({2) be non-constant in a region €2, then f is
an open map, i.e. image of an open set is open.

Maximum modulus principle: if f is non-constant on {2 open and connected, with
compact closure €2, and f is continuous on €2, then

sup [f(2)] < sup [f(2)]
2€Q 2€Q\Q

Another way to say this is the following

max | f(2)] < max |f(2)]
2eQ) 2e0\Q
——

exists because €2 is compact

3.1 Zeroes and poles

We start with a definition of singularities

Definition 3.1. Let © C C be open and let f € (Q2). The point zp € C\ Q is
called a (possible) isolated singularity of f if

Ir>0: flp, ) €7 (DT(zO))

or if

JU., € OF : flUZO\{ZO} € %”(UZ0 \ {zo})
where OF is the induced topology from C

Note that in the above Definition [3.1] the term ”possible” means that the singularity in
question at that point can possibly be removed.

Example 3.1. Let tan (%) be defined in C without some countable set has singularities
at
2 2 2
7 3r’ b
Note that 0 is not an isolated singularity of f. The points
2 3 2
w2’ 2k + )

for k € N are instead isolated.
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Example 3.2. Consider the function

f:C*=C\{0} = C
Z =z

z = 0 1s an 1solated singularity of f, because f is not defined there, but f can in fact be
extended to all of C by defining f(0) = 0. In this case, z =0 is a “removable singular-

ity” of f
On the other hand, we have that

fiCr=C\{0} > C
1

Z =
zZ

has a singularity at z = 0, which cannot be removed.

Definition 3.2. Let 2 C C be open. An isolated singularity zg € C of a function
f € #(Q\ {z}) is called removable if f is holomorphically extendable to all
of (), i.e.

AF € (V2 € Q\ {2} : F(2) = f(2)

We have the following Theorem of Riemann, sometimes called Riemann continuation
Theorem.

Theorem 3.1 (Riemann continuation Theorem). Let  C C be open and non-
empty together with 2y € 2. Then the following assertions for a function f &
A (Q\ {20}) are equivalent:

(i) f is holomorphically extendable to

(ii) f is continuously extendable to €2
(iii) f is bounded in a neighbourhood of 2y, i.e. Ir > 0: f[y ) € B (Dr(zo)>

(iv) lim,,,(z — 20)f(2) =0

Proof. Exercise. O]

If a point satisfies one of these equivalent conditions, we call it a removable singularity.
As a consequence of Riemann’s continuation Theorem we have Riemann’s Theorem
on removable singularities.
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Theorem 3.2 (Riemann’s Theorem on removable singularities). [SS10, Theorem IIT.3
Let Q C C be open, z € Q and f € #(Q\ {z0}), if Flbozo) € B(D.(z)) for some
D, (zp) C Q with r > 0, then zy is a removable singularity of f, i.e.

AF € (V2 € Q\ {2} : F(2) = f(2)

Note that this represents (iii)==-(i) in the previous Theorem which states (iii)<=>(i)

Example 3.3. 1. Let f(z) = Sm(z for z #0, f has a removable singularity at z = 0.
We can see this either using (w) of the Riemann’s continuation Theorem[3.]]

lim zf(z) = lim sin(z) =0

Z—20 Z—20

or using the extension of L’Hopital’s Rule to C [see Appendix .

lim sin(z) lim cos(z) _

Z—r20 A Z—20

which imply that f(z) = Sinz(z) is bounded in a neighbourhood of 0, i.e. [ €
B (Dr(0)> In fact, it holds that

lim $22)
20

Finally, let € = , then 3r > 0V|z| € (0,7) it holds that

1

sin(z) | <

z

and therefore f € B (DT(O)) One can also use that on C

. 0 (_1)nz2n+1
sin(z) = nZ:O ot

and hence it follows that on C

n2n

nz: 2n+1

15 the holomorphic extension of % to all of C
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2. Another such example is: if f(z) = =*= on C*, then f has removable singularity

-1
at z =0, since
: : .1
e =y T !

by the same extension of L’Hopital’s rule as before. Hence f is bounded in a
neighbourhood of 0, i.e. Ir >0: f € B (Dr(0)>

If f € #(Q\ {20}) does not have a removable singularity at z, then f is not bounded
near zy. We can then ask whether its unboundedness is similar to the unboundedness
of (z—lzo)n’ i.e. we can ask whether (z — z0)"f(2) is bounded near z, for n sufficiently
large. If such an n € N exists, then zj is called a pole of f, let us hence first define this

once for all.

Definition 3.3 (Pole). Let 2o € C and f € 5(Q\ {2}), if
In € N*Ir > 0: D,(20) € Qand (2 — z)" flpy o) €B <Dr(zo)>
then zp is called a pole of f and the natural number
m = min{n eEN:Ir>0:(2—20)"feB (Dr(zo))} e N

is called the order of the pole of f at z;. Poles of first order are called simple
poles.

Remark 3.1. To compute the order of pole of f at zy, one can can compute the order
of zero of% at 2y, as shown later.

Example 3.4. The function f(z) = m for z € C\ {20} has a unique pole of order
m at 2 = 2

We will see soon that poles arise from reciprocals of holomorphic functions with zeroes.

Before we make this more precise, let us recall that zeroes of holomorphic functions are
isolated and we have the following Proposition for their behaviour near a zero.

Recall (Proposition [2.2)): Suppose f € () in Q open connected, f has a zero at a
point zp € () and does not vanish identically on 2. Then

Ir > 03lg € (D, (2)) \{0]p, (s 1T € N*: (Dy(z0) C Q) and
(Vz € Dy(20) : f(2) = (2 — 20)"9(z)) and (n = min{n € N: f () # 0})

We remark that ¢ is a unique non-vanishing holomorphic function in (D, (z))

The analogous Theorem for the poles is the following:
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Theorem 3.3. Let Q C C, 29 € Q and f € #(Q\{2}). For m € N* the following
statements are equivalent:

(i) f has a pole of order m at zy, i.e. (z — 29)™f is bounded near z; and m is the
smallest such integer.

(i) 3r > 0: D,(20) C @ and 3g € (D, (20)) : g(z0) # 0 and

Yz € Do(20) : f(2) = _9)

(z — z9)™

(iii) 3r > 0: D,(20) C Q and 3h € S (D, (20))Vz € D, (2) : h(z) # 0, moreover h
has a zero of order m at zy and such that

Vz € Dy(z) : f(z) =

Proof. (1)==(ii): The fact that f has a pole of order m at zy means that (z—z9)™ f(z)

is bounded near zy and that m is minimal, thus 3r > 0 : D,(z) C  on which
f in bounded. The Riemann’s Theorem on removable singularities [3.2| states that
Jg € (D, (20)) such that g(z) = (z — 20)™ f(z) whenever z # z € D,(z)

If g(z9) = 0, then it would imply by the previous Proposition that

9(z) = (z = 20)3(2)
where § € #(D,(z)). Consequently, this would give that for z € D, (z)
(2) = (= — 20)" " f(2)

is bounded near zp and this would contradict the minimality of m. Hence g(z0) # 0
and together with it we get that f(z) = (z — 29)™¢g(z) for z € D,.(z)

(ii)=>(iii): Suppose that 3r > 0 as in (ii) and that 3g € #(D,(z)) such that
g(z) # 0 and f(2) = (z — 20) "g(2) for z € D,(z). Since g(zo) # 0 and g is contin-
uous, then Ir > 0:Vz € D,(z) : g(z) # 0, meaning that r can be chosen adequately
since the beginning.

Let for z € D,(z)
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then h(z) # 0 for z € D,(z) and therefore h € A (D, (z0)) and with h(zp) = 0. Also,
we have that in D, (z)

Note that h has a zero of order m at zg, since h(z) = (z — zo)mg% and Vz € D,(z) :
7 70

(iii)=>(i): Suppose that 3r > 0: D, (20) C Q and 3h € (D, (z)) such that h(z) # 0
in D,(z). Suppose also that h has a zero of order m at z, and

1

Vz e Do(z) : f(z) =
Since h has a zero of order m at zg, then by Proposition [2.2| 3k € J# (D, (z0)) such that
h(z) = (2 — 29)™k(2) and
ds > 0Vz € Dy(z0) € Dy(20) 1 k(2) #0
Since k is holomorphic and non-vanishing, % is holomorphic on Dy(zg). But then

Vz € Dy(20) : f(z) = %z) =(z— ZO)_mﬁ

would imply that (z — z0)"f(z) = ﬁ is holomorphic on D,(z) and has the holo-

morphic extension 1 on Dy(zy) (given that 1 is holomorphic on Dy(z) since k # 0 on
Dy(20)).
By the Riemann’s continuation Theorem [3.1] we have that

(2 —20)" f(2)

is bounded in a neighbourhood of zy,. Moreover, it holds that

a1 = (175) (25)

1 1 Z—rZ
# 0 and LN
k(zo) z— 2

is not bounded since

Hence, m € N* is minimal and f has a pole of order m at z O

Example 3.5. Consider the following examples:
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1. The function f(z) = ez+l has a pole of order 1 at z =0, since

1 B = 2" = 2" = 2t

n=0 " n=1

1
e*—1

has a zero of order 1 at z = 0 (note that has simple poles at z = 2wik for

kelZ).

2. The function f(z) = == has poles of order 1 at z = £1, since

=607 (o)

and h(z) = =% is holomorphic and non-vanishing on D%(l). Similarly,

o=+ ()

and h(z) = —== is holomorphic and non-vanishing on D%(—l)

-1

The next Theorem is the analogue of the power series expansion of a holomorphic func-
tion.

Recall: if f € 2(Q) and 2, € Q such that D,(z) C Q. Then by Theorem
Vz € Dy(z): f(2) = Zan(z — 2p)"
n=0

For functions with poles we have
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Theorem 3.4. [SS10, Theorem II1.1.3] If f € 5 (Q\ {20}) has a pole of order n
at zp, then

where GG is a holomorphic function in a neighbourhood of zg, i.e. G € (D,,(zo))
for some r > 0

Proof. f has a pole of order n at 2z, hence 3r > 0 such that 5r(zo) C Q\{#} and we
can write

¥z € Dy(z0) : f(2) = (2 — 20) "g(2)
with g € (D, (z)) and with g(z) # 0 with Theorem

We expand g in a power series by Theorem [2.7], hence

< olH (2 )
Vz € Dy(20) : g(2) = Z g kf' )(z — 2p)
k=0 '

It follows that for any z € D,(z) we can write

z) = z) =
12) = = g0(a)
1 > g[k](zo)
S I
— n !
(z — z0) ~ k
n—1 k] 00 k]
. g (Zo) g (Zo) k-n __
- ( k'(z—z())"_k> > T a) =
k=0 ic:n ,
—G(2)
" [n—4]
9" (20
= +G(
(el (n—E)!(z—z()V) ()
here Vk 1 . — 9" H(20) ]
where 6{ ,...,n}.a_k _W
Remark 3.2. The function f(z) := >.° a,(z — a)* is a special case of a Laurent
series (see Serie 9 and Serie 10).
Definition 3.4. e The number a_i, i.e. the coefficient of (z — z5)~! in Theorem

3.4 is called the residue of f at the pole zj, denoted by

Res,,(f) :==a_y
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e The function .
a_ .

P (f,2) = Pl(z) = —

‘= (z — 20)7

in Theorem is called the principal part of f at the pole z;, where

]
Vie{l,..,n} a_;:= J j('Zo)

as in latter proof.

Remark 3.3. If f has a pole of order 1 at zy, i.e. a simple pole, then

Res,, (f) = lim (z — z0) f(2)

Z—20
Since if f has a simple pole at zy, then
f6) = 2 (2

with g € 7 (D,(z)). Hence, it follows that

(2 = 20)f(2) = a1 + (2 = 20)9(2)
lim (z — 29) f(2) = a—1 + lim (2 — 29)g(2)

2—20 Z—r20
lim (2 = 20) () = a1 = Ress, (/)

Conversely, if lim,_,,,(z—2) f(2) exists and is non-zero, then (z—zy) f(2) is bounded in
some neighbourhood of zy. Hence, zg is a pole of f of order at most 1 by our definition

of pole.

If the limit exists and is equal to 0, then it means that f has a removable singularity at
20

More generally we have the following Theorem:

Theorem 3.5. [SS10, Theorem II1.1.4] If f € 5 (Q\ {20}) has a pole of order n
at zg, then

1 dn—l
Res,, (f) = lim

B g (e~ ) )

Proof. Let
f(z) = P{(2) + G(2)



92 CHAPTER 3. MEROMORPHIC FUNCTIONS AND RESIDUE FORMULA

for z € D,(2) with P/ (z) = 3" | =% and G € H#(D,(z)). Then it holds that

J=1 (z2—z0)7
(2= 20)"f(2) = G()(z = 20)" + Y ay(z = z0)"

differentiating n — 1 times gives

dnfl dnfl

W((Z — zo)"f(z)) = W(G(Z)(Z — Z(])n) + (n—1)la_,
and lastly

lim d:n_l (= = 20)"f(2)) = (1 = Dl + lim (= = 20)G(2)

-

=0

for some G € #(D,(z)) by the General Leibniz Rule [EW22]. Hence, the final result
is obtained by some final algebraic manipulations, so

Resa (/) = a1 = Jim o s (= 0" (2)

Z—20

Example 3.6. Consider the examples:

1. For the function f(z) = 22—11 we have a simple pole at z =1
1 . L1 . 1 1
Res; (22+1> :lzlg%(z_l)zQ—l—l _,lzlgzl‘z—i—l T2
2. The function f(z) = m has two poles of order 2 at z = +i
1 d 1 d —2
Resei(f) = lim ———~ ((z4i?—— ) = lim — -
essilf) oo (2—1)dz <(Z ) (22 + 1)2) ki dz ((z + 2)2)

-2+l

— | _
ki (z 2 0)8 A

Remark 3.4. The following one is a useful tool to calculate residues of simple poles.

Lemma 3.1. If f, g € 52(Q) with 2z, € €, f(20) # 0 and g has a simple zero at z,
then § has a simple pole at z; and

Res, (161 - £

9(z) ) 9'(%)



3.1. ZEROES AND POLES 93

Proof. 1t is clear that if g has a simple zero at zy, then g(z) = (z — 29)g(z) where
9(z0) # 0, non-zero and holomorphic in some D,(zy) C Q2 for some r > 0

f(Z) — (Z o ZO)—I{C(Z)

9(2) 9(2)
where gg)) e A (Dr(zo)) and non-zero at zy. So ch 8 has a simple pole at zy. We now
apply Theorem to 5, SO

Res,, <i> = lim (z — zo)f(z) = lim f(z)—(z_zo) =
g) 9(2) = ==z g(z) — g(20)
9(z0)=0
= f(20) lim (2 — %) = f/(Zo)

220 g(2) — g(20)  9'(%0)

since ¢ is holomorphic at z O]

Example 3.7. 1. Let g(z) = ﬁ with a simple pole at z = i, then

2. We want to determine Res; (Zj—il>, hence we can either use partial fraction ex-

pansion as
23 z 1 1 1 1
z— =2 —
2241 2241 22—1 2z+1
and get Res; (Z§i1> = —%, or use the above Lemma
Res; & = f(Z> = ﬁ = !
22 +1 g'(i) 2 2
with f(z) = 2% and g(z) = 2> + 1 (notably faster in this case).

Remark 3.5. Note that, if f(z) = P! (z) + G(2) for z € D,(2), where Pl is the
principal part of f at zy and G is a holomorphic function, and C(zo) is any circle
centred at zg and contained in D,(zy), then

n o .
P! (2)dz = / ————dz = 2mia_,
/C’(zo) 0 C(z0) ; (2 — 20)F

1
/ —dz:{ O. ,n#1
Czo) (2 — 20)" 2 ,n=1

3Using the Cauchy’s Integral Formula with the constant function 1|m :D(z9) - C,z — 1
and C = 0D

smceﬁ
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By Cauchy’s Theorem we also know that if C(29) C D,(20), then

/ G(2)dz =0
C(20)

Hence, we have that

(2)dz = 2mia_4
C(20)

In fact, we have the following general formula

Theorem 3.6 (The Residue Formula). [SS10, Theorem II1.2.1] Let @ C C be
open and let S := {zy,...,2,} € Q be a finite set. Suppose f € (2 9), i.e.
holomorphic except for poles at zg, ..., 2z, € S. Let v be any circle contained in €2
with counterclockwise orientation and such that im(y) NS = 0. Let D be the open
disc bounded by 7. Then

/f(z)dz—Qm' Z Res.(f)

zeSND

Before we give the proof we will look at simple examples which use this formula to
calculate integrals.

Example 3.8. 1. Let v be the circle such that |z| = 3 and consider the integral

dz 1 1
——— = 2mi Res; | —— 2miRes_; | ——— | =
/7<22+1)2 T Res ((22+1)2 + 2m Res ((22+1)2)



3.1. ZEROES AND POLES 95

2. The second example is

23 . 2’3 . 23
/ mdz = 2m RGSZ' W + 271 RGS,Z‘ m =
C3(0)

-1 -1
= 27TZ (7 -+ 7) - —27T’i

3. The third example is

/ dz _0
¢y (224 1)2
1

since there is no pole of (EnyE inside the circle given by |z — 1] = %

4. The fourth example is

e? e* e*
— dz=2miR _— 2miRes_ | ——
/m G esl((22_1)2)+ TeRes 1(<z2—1>2)

FEvaluating separately the two residues we obtain

o (@) =

where f(z) = € and g(z) = z* — 1 and using the Lemmal[3.1] also
o —1 —1
Res, ((6—) _ f(=1) _

2-12) g¢g(-1) 2

by the same procedure on the other pole. Hence, we finally obtain

eZ
————dz =Ti(e —e )
/cg(o) (22— 1)

We can now proceed to the proof of the formula.

Proof of Theorem[3.6, Let us first assume that f is holomorphic on an open set
containing a circle and its interior, except for a single pole at zy inside v. Let D be the
disc bounded by v

~
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By Theorem
f(z) = P (2) + G(2)
where G is holomorphic in a neighbourhood D,(zg) of zy and

PLE =

k=1

is the principal part of f at 2y, note that PZ];(Z) is holomorphic in all of C\ {z}.
Another way to say this is that the function f(z) — P (z) extends holomorphically to
), as for the function

g:Q—=C,z—g(z) = { f(z)G_(z]OD)Z];(z) : i E %r\é:)()}

is the holomorphic extension of f(z) — P/ (2) to Q2

We then obtain that

/Wg(z)dz_/(f(z)—PZ’;(z))dz—()

o

/7 F(2)dz = /7 P! (2)dz

and we are left to prove that f,y sz)(z)dz = 2mia_,. This follows from the Cauchy
Integral Formula applied to the constant function F' : Q — C,z +— F(z) =1

Recall: The Cauchy Integral Formula for derivatives 2.3] Let C' = 9D be any circle
whose interior D is contained in Q. Then for F' € 7#(£2) and any z € D it holds that

! F(w)
il zzﬁ;/° d
(=) 27 Jo (w — z)nHL v
/ dz _2m'dz”’1(1)_ 0 ,n—12>1
L (=2 nmldzntV | 2m ,m—1=0

/f(z)dz = 2mia_y = 2mi,, Res(f)

hence,

and so we get

For the general case consider f holomorphic in €2 except for finitely many points 2y, ..., 2,
and let P/ be the principal part at z for k € {0,...,n} =: I, which is holomorphic in

CA\ {2}
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Hence, define in 2\ S the following function
g:Q\S—>C,z— g(z Z

2k €S
kel

then for g € (2 \ S) and in fact g can be extended holomorphically to all of 2. To
see this let zg € S, r > 0 such that D,(z0) C D, D,(2) NS =0 and f(z) — P/ (z) is
holomorphic in D,(zp)

Then for z € D, (%)

9(2) = f(z) = P (2) + Y Pl
- zeS\{=
extends holomorphically to D (zo) ZEIQ%{O?}

holomorphic in Dy (z0)

This gives an extension of g to (Q2\ S)U{z0} = Q\ {21, ..., 20}, we can do this for each
zr € S with k € I to get a holomorphic extension of g to all 2. By Cauchy’s Theorem

2.5 we obtain that
/g(z)dz =0
Y

/f dz—Z/

zR €S
kel

and if Z € SN D, then as before (for ¢ = ord;(f))

¢
/ dz_/z G_ 2 dz-27rza 1 = 2mi Res;(f)
—1

If Z € S, but not inside D, then
/ng(z)dz =0
v

which in return gives
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since then ng is holomorphic inside the disc.

Hence, we finally get
/f(z)dz = 27 Z Res:(f)
v zeSnD

O

Remark 3.6. 1. Another way to prove this is the following: first assume there is
Just one pole inside of y. Consider the following contour I'c s

inside of it f is holomorphic and we can show using Cauchy’s Theorem [2.5 that

/Fa,g f(2)dz=0

Here we went around the pole zy with a circle of radius € > 0. The width of the
corridor is > 0

We can then make the width of the corridor narrower by letting 6 — 0 and use
continuity of f to show that the two sides of the corridor cancel each other. The
remaining part consists of two curves, the larger circle v and the small circle
C<(z0) with clockwise orientation; we therefore get

/vf(z)dz + /Cs(zo) f(z)dz=0

It takes, though, some effort to make this argument rigorous.
2. The best way to understand and generalise the Residue Formula (and Cauchy
Integral Formula@) 18 via homotopy. It is based on the following principle.

Let f be holomorphic on an open set S). For example, the space between two
circles.
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The principle is that if two closed curves can be deformed to each other while

remaining in €2, then
[ 1@iz= [ s
Y1 Y2

We are going to get back to this soon.

3. Assume v is not a circle, then consider it a triangle, a polygon or any curve 7,
which has a parametrisation of the form

v la,b] = C\ {2}
t > 29+ r(t)e®

for some 1,0 € C*([a,b],R) functions such that r(t) > 0, r(a) = r(b),0(a) = 0

and 6(b) = 2w
y yi\ ©
ey Rt
Moreover,

r(t) = [y(t) — 2]

and 0(t) is a continuous choice of argument along the line segment ¥(t) = v(t)—zo,
lastly we have that

G0 _ (t) — 20
‘V(t) - Zo|




100 CHAPTER 3. MEROMORPHIC FUNCTIONS AND RESIDUE FORMULA

Then it holds that
A (1) = (0" 4 ()"0 (1

and so we obtain that

1 b ,Y/(t b’f’/t b
= dt+1i | 0'(t)dt =
27 y 2= 20 /rte’ /rt +Z/ *)

= [log rt)] i [6(¢)] Z—O—I—Qm

(This is similar to the parametrisation of a circle using a point inside other than
the centre)

Note that for

with n. > 1, since | L is a primitive of —n in C\ {2z} and ~ is a

G 1o
closed curve.

Hence, for any such contour v we have

/f Ydz = 2mi Z Res.(f

zeUyNF
where U, is the set contoured by vy

Before we give more theoretical applications of the Residue Theorem [3.0] let us give
some applications to the evaluation of real integrals.

Example 3.9 (Integrals of rational functions). E.g.

/°° dv
_ool—irac2_7r

This of course can be evaluated easily using arctangent. We though give another proof
of it, using the Residue Theorem [3.6

Idea: To choose a function f and a closed contour, so that part of the contour leads to
the real integral after taking limits.

In this particular case we take f(z) = ﬁ as function and ygr as the contour path.
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—R

f has only one pole, at z =1 inside g, hence

/ f(2)dz = 2miRes;(f) = 2milim(z — 1)

z—1 1+ 22 2= 2 41

Then we also have that

/f(z)dz—/R ! d:c—l—/ !
. _p 1+ a2 rp 1+ 22

for T'r as the semicircular part of the closed path. As R — oo, the first integral gives

< 1
/ R
oo L2
and similarly, as R — 0o, we see that over the semicircle I'g the integral goes to zero.

This is because on T'r: |2* + 1] > R* — 1 and hence Z21+1 < ﬁ ~ %. Therefore, we
have that

dz

1 R—o00

1 T
dz| < R~—-—""=0
/FR1+Z2 Z‘ R-1"""R

Hence finally we conclude that
< 1
/ de =
oo L+ 22

Example 3.10. The same technique works to calculate the integrals of the form

where P,Q € C|z], Q has no zero in the real azis and deg(Q) > deg(P) + 2

P(z)
o™

Note that we need this bound for the degrees of P and @) in order to get

P(z)
r Q(z)

dz £2%
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If deg(Q) = n and deg(P) = m on the semicircle, for R sufficiently large Q) satisfies
the inequality |Q(z)| > K|z|" for some K € R=" and we can hence bound

P(z) r™ C
Q(Z) Rn - Rn—m
Hence, it holds that
P(z) C C
dz| < R=
I'n Q(Z) 2l = Rn—m Rn—m—l

For this reason, in order for the control bound to go to zero, we need

n—-—m-1>0<=n>m+l<=n>m-+2

namely
deg(Q) > deg(P) + 2

Once we get this result, we can proceed with the calculation of the initial integral: we

remember that n
PE) g [M Py [ 20,

Q0T T Lra™ T o)™
gives as R — oo
P(z) , (P)
dz =2 Res: | =
v Q%) o zeFr%(fyR) \Q

for F' the set of all poles ofg (therefore we then consider only the ones inside g ).
Example 3.11.

/°° 1 de =
oo (22 + a2)2 m_Qas

I'r

at

Consider the function f(z) = —z with poles at +ai of order 2 each. Without loss

(z2+a2)2
of generality, we assume that a > 0, since this would only switch the poles between

themselves in a manner that would way in the same result as the following.

1 . d 2 im !
e (ﬁ) = lim g (e = aif() = lim 22 (ﬁ> )
I 2 T
= lim = - T 4a3
cai (z 4 ai)®  (2ai) 8adi 4ad
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As above we conclude

and we get

Example 3.12. The same contour can be used to evaluate integrals of rational functions
times sin(ax), cos(ax), for a € R, i.e. of the form

/.o

where P,Q are polynomials in R[z| with deg(Q) > deg(P) + 2

cos (az)dx

Take the function f(z) = %ei‘” and not Qg ; cos(az), since cos(az) behaves badly on

the upper half plane. On the imaginary axis for example

, el +et P41
cos(it) = 5= o

is the hyperbolic cosine, which grows ewponentially. Whereas |e”*| = |e!@TW)| = ¢7V,
which is bounded by 1 in the upper half plane. So, for Im(z) > 0: ]| < 1

E.qg. for a > 0 we have
< 1
/ ST cos(ar)dr = me™*

2 +

—00

with f(z) = ;+1’ which has only one pole on the upper half plane at z = i, so

6iaz eiaz e~
Res; | —— ) =lim =
<22—|—1) iz 41 20

Hence
RS
TR
Since |€%| < 1 on the upper half plane, we have that
eiaz 1
<
22+1| 7 R2-1
and hence that ) .
elaz T Resoo
dz| < > 0
/FT22+1 | =R

and consequently

Va>0:/ ¢ de = e
|
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we now note that 5% — Re ( o ), hence by taking the real part of the function we

241 241
get
/ cos(ax)dx R

oo 22 +1

This also shows that * sin(az)
sin(ax
dr =0
/_Oo 21
sin(ax)

which can also be directly seen, as 15 an odd function.

2241
Example 3.13 (Integrals of trigonometric functions). The Residue Theorem can
be used to evaluate real integrals of the form
27 P(cos(t),sin(t))
o Q(cos(t),sin(t))
where P,Q are polynomials and where it holds that Vz,y € R : (2> +¢y* = 1) =
Q(z,y) # 0 (every pair (x,y) on C1(0) has Q(x,y) #0.)

Consider the example of

21
Va >1: / ;dﬁ
o @+ cos(f)

The idea is to convert it to a contour integral around the unit circle. Expressing cos(6) =
Re(z) leads to an effective approach: the trigonometric function cos(6),sin(f) can also
be written in terms of z on the unit circle C1(0) as follows

el 4 e~ 54 %

9 pu— =
cos(0) 5 5
and y Y )
eV —e’ z—3
1 0 = pu— Z
sin(f) 2i 2i
1
Hence, we can write a + cos(0) = a + Z;z and

2m
1 1 d 2 1
Y S S Y B
o @+ cos(f) Ci(0) @ + ZJ;; iz 1 Jey) 2t 20z +1

where the term i arises naturally from the construction of the integral. The poles of

the integral are at —a & /a? — 1, but only one of these roots is inside the unit circle,

namely zo = —a + vVa? — 1

R 1 . 1 . 1 1 1
€S, — | = llIn = lim = =

"\ 224 2az+1 =20 (2 —21) (2 —20) =222+ 2a 2z0+2a 2va?—1
Therefore, we finally have

s
1 2 1 2
/ ——df = -2m = m
o @+ cos(f) i 2va2 -1 Va2 -1



3.1. ZEROES AND POLES 105

We now turn to more theoretical applications of the Residue Theorem [3.6, We start
by giving one more description of an isolated singularity, which is a pole. Namely, we
have the following Proposition.

Proposition 3.1. [SS10, Corollary II1.3.2] Suppose f € #(Q\ {2}) with Q open
has an isolated singularity at the point 2y, then

7o is a pole of f <= lim |f(2)| = o0

zZ—r20

Proof. If f has a pole of order k € N* at 2o, then by Theorem we have that there
exists some 7 > 0 for which f(z) = (z — 20) *h(2) on D,(2y) with a bounded function
h € H# (D, (z0)) for which it holds that h(zp) # 0. Then

7] = [ — 20 H{[42)] 222 o0

since |h(2)] R, |h(z0)| # 0 and k > 1

Conversely, if | f(z)| 7% 50, then we can find some r > 0 such that | f(z)] > 1 (or any

£ > 0 would also be suited for the case) on D,(z). In particular, f(z) # 0 on D,(z)
by Theorem [3.3 and there is a h € (2 \ {2}) such that

is holomorphic in D, (z) and |h(2)| <1 there. Furthermore, it holds that lim,_,., h(z) =

lim, ﬁ = 0. By the Riemann’s Theorem on removable singularities , h extends

to a holomorphic function A in D, (z) by defining iz(zo) = lim,,,, ﬁ = 0 and other-

wise h = M, (20
Therefore, if N € N is the order of zero of h at zy, then f(z) = ﬁ has a pole of order
N € N at z O

We have seen that an isolated singularity zy of f is removable if f is bounded near zy,

at the same time zg is a pole if | f(2)] EEINJCR

Definition 3.5 (Essential singularity). An isolated singularity that is neither remov-
able nor a pole is called an essential singularity.

As we saw in the very beginning, the function e* has a more exotic behaviour. E.g.
1 . 1 oy
ex — 0 as x 0 from the negative reals, whereas ez — oo as x \, 0 from the positive

reals.
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In fact, any function f € C® behaves exotically near an essential singularity. More
precisely we have

Theorem 3.7 (Casorati-Weierstrass). Suppose f € (DT(ZO)) and has an essen-
tial singularity at 2o
Then the image of D,(z) under f, namely f ( +(20)), is dense in C

Remark 3.7. The Casorati-Weierstrass Theorem [3.7 states that the image of a punc-
tured disc D,(z9), no matter how small, effectively fills up the whole complezx plane
(where zy is an essential singularity). In fact, a remarkable Theorem of Picard says

Theorem 3.8 (Picard’s Theorem (1879)). If f € %”(Dr(zo)) and has an essential
singularity at zg, then C\ f (Dr(zo)) contains at most one point.

The function f(z) = ex maps each punctured disc centred at z = 0 to C*, i.e. it does
not take the value 0, so the “exceptional value” permitted by Picard’s Theorem
may in fact exist.

Proof of Theorem[3.7. We want to show that for the given r > 0
V€>O‘v’w€CEIzED |f w|<€

and to do so we argue by contradiction and show that this will forces the singularity at 2
to be either removable or a pole, hence contradicting the assumption that z, is essential.

Assume on the contrary that the image in question is not dense in C, hence for the
given r > 0
E|5>OEIwOGCVz€D (20) }f w0|25

Let g : Dy(z) = C,z — g(z) == m, then on D,(z) we have that g is bounded
by %, hence has a removable singularity at z; by Riemann’s Theorem on removable

singularities [3.2] Hence, there is a holomorphic extension of g, i.e. we can define g at
20, so that g becomes holomorphic in D,.(z)

Since |f(2) — wo| > & and g(w) = f(z) oo clearly g has no zero in D, (2), hence its
reciprocal % has an isolated singularity at zg € D,(zp). This singularity is either a
removable one or a pole, depending on whether lim,_, ,, ‘ g(z)’ = 0 or not, respectively.
In turn, this gives that the singularity of f = wy +§ at zp can be at most a pole, giving
the anticipated contradiction. Note that the limit lim, ,,, g(z) exists, since g has a

removable singularity at z O]
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3.2 Meromorphic functions

We now look at functions whose singularities are poles. Since at a pole lim,_,, ’ f (z)| =
0o, this suggest that we can add oo to the values of functions, including consequently
the poles in their domain of definition. E.g. The function

f:C"—=C
1
2 —
z
can be extended to
f:C— CuU{x}

1

Z = —

z

Definition 3.6. e The set R
C:=CU{o0}

is called the Extended Complex Plane. Here oo represents a point “at
infinity” and is unsigned. In C, we can supplement the rules in C by

VzeC: ootz = z2z£o00 = o0
Vze C\{0}: o0-2 = z-00 =
VzeC: = =0
Vze C\{0}: f = oo

The expressions oo =+ 00, 22, % and 0 - co are not assigned a meaning in C

* . . .
o A sequence (z,)nen+ € CY' converges to oo, i.e. lim,_,o 2, = 00, if

lim |z,| = co
n—oo

where (\zn\) € RY". Similarly, we say that lim,_,., f(z,) = oo, if

neN*

lim |f(z,)] = oo
Z—rZ20

Remark 3.8. C is not a field.

Talking now about functions, we can extend our definition of holomorphic function to
a more general notion.
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Definition 3.7 (Meromorphic function). A function f € C? with Q C C open in C
is called meromorphic, if the following conditions are satisfied:

e Theset Sp:={z€Q: f(z) =00} = f~!({oo}) has no limit point in 2, i.e. S;
is discrete in €2

e The points in Sy are poles of f

e The restriction of f to Q\ Sy = {# € Q : f(2) # oo} is holomorphic, i.e.
f|Q\Sf € %(Q \ Sf)

Let . (§2) denote the set of all meromorphic functions in

Note that the set of poles for meromorphic functions is discrete, as the set of zeroes for
holomorphic functions.

Example 3.14. 1. Let P,Q € C[z] be two polynomials with no common zeroes.
Note that any rational function § (for p,q rational functions) can be reduced to

b with no common zeroes. Let

Q
P(z)
f.(C—>C,z|—>f(z).—{ Cf)(o) 00 =0

Then f € #(C), since f is holomorphic outside the finite zeroes’ set of Q(z). If
2o 1S a zero of Q), then f has a pole at zy, as

having we assumed that P(z9) # 0. Hence, zy is a pole of f

2. The function f(z) = cot(nz) = Zif((:;) is a meromorphic function in C with Sy = Z

1
8. Let f(z) = 57, then f is meromorphic in C* with Sy = {1}, but not in C, as
z =0 1is an essential singularity.

If we have two functions f, g € .#(2) with pole sets Sy and S, then f+g¢ is holomorphic
in Q\ (SyUS,) and we can define f 4 g at points in this set using the usual definition:

VzeQ\(S;US,): (f +9)() = f(2) + g(2)

So we only have to worry about points z € Sy U S, and by doing so we can extend
(f + 9)’9\(Sfusg) cQ\ (SyUS,) — C to a meromorphic function f+g¢: Q — C. We
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can do this in the following manner:

If 29 € Sy US,, write for all z € DT(zo) forar >0 as

where PZJ;, PJ are the principal parts of f and g at 2 (one of them can be zero if f or

g does not have a pole at z) and where f,j € A (Dy(2)). Then

(f+9)(z) = P(2) + P3(2) + f@)+ak)

holomorphic in Dy (zg)

linear combination of terms of the form (z—lzg)l

so f + g has a pole of order > 1 at z; and we assign the value co to that point under
[+ g, this unless P! (z) + P¢(z) = 0 (which can happen). Hence, f + g € .# () with
Spa ©Sr U5,

We have proved part (ii) of the following Proposition:

Proposition 3.2. Let 2 C C be open, then
(i) #£(Q) € .#(Q)

(i) If f,g € #(Q2), then Va,b € C: af +bg € 4 (X2). Hence, .#(Q2) is a C-vector
space.

(iii) If f,g € A (), then fg € .# ()

(iv) If 0 # f € # () and the zeroes of f do not have a limit point in €, then
% S

Proof. (i) Obvious, but note that we identified a holomorphic function f € 7(Q)
with the corresponding function f € .#(Q2), where f =io fandi:C — C

(ii) The same argument for f + g works with af + bg
(iii) Let f = PZ/; + fand g = PJ + g with zy € Sy U Sy, then

fg=(PL + f)(PS +q)=Pl+G

where P/9 is a linear combination of m terms and G € (D, (z)) for some

r > 0 by Theorem (G is the sum of the respective functions in the case of f
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(iv)
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and g separately), so

fg= (Z ak(z—zo)k) (Z b; (z—zo)l> =

k=—n l=—m
= D | 2 ey (-t
N=—(n+m) k,l

k+I=N

g if f(2) = f = 254 e an(z—20)" and g(2) = 2p + 225+ 2% bi(= -
20)!, then

b,QG,1 b,QCLQ + lelbfl a,1b0 + b,1a0 + b,gal
fg= + + +G
(z — 20)3 (z — 20)2 (z — 20)

where GG is holomorphic in some disc around z,. Hence, we have that fg has a
pole of order 3

Similarly to the case of f + g, we can define

g = { FE9 e\ Us)

Then fg is meromorphic, i.e. fg € 4 (Q2) with Sy, C S U S,

Let f e #(Q), if zp € Q\ Sy and if f(2) # 0, then % is holomorphic at zg, if
2o € Q\ Sy and f(z) = 0, then % has a pole of order k (equal to the order of
zeroes of f at z) at zy (of order > 1). If z5 € Sy, then

Z—r20
0

7

hence 7 is a removable singularity at zy. So, if the zero of f has no limit point in

2, then the poles of % have no limit point in 2 and hence % e ()
]

Remark 3.9. If we assure that f # 0 in an connected component of 2, then % e ()

Recall: If f € C?, Q open and connected and f € (), then the zeroes of f do not
have a limit point in Q (see Theorem [2.10)).

For an open and connected set 2, the same is true for f € .#(Q)
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Proposition 3.3. Let © be open and connected, 0 # f € .# () and Z; := {z €
2: f(z) =0}, then Z; has no limit point in Q

Proof. Assume on the contrary that 3(z,)pen+ € Zj}’* of distinct points such that
lim, o0 2, = b € Q)

Let Sy be the set of poles of f (recall that it is countable), then flg s € F(Q2\ Sy)

and €2\ Sy is open, connected and f # 0. Hence, by the above result we have recalled
b ¢ Q\ Sy

But b ¢ Sy either, since if b were a pole of f, then lim, ‘f(z)‘ = oo and it would
mean that for e > 0 we would have |f(z)| > 0 for z € Q with |z — b| < e. But this is
impossible, since if z, — b, then |z, — b| < € for n > ny and f(z,) =0 O
Remark 3.10. Let f € .#(2) and 2 a pole of f, since Sy has no limit point in Q,
then it ezists a punctured neighbourhood D, (zy) of zy for some r > 0 such that

DT(Z()) M Sf = @

If the order of the pole of f at z is k, then f(z) = (z — z0)*g(2) with an analytic
function g(z) € S (D, (2)) by Theorem .

Hence, locally every meromorphic function is the quotient of two holomorphic functions.
Here:

1) = 2

(z — 2)F
It is a non-trivial result that if Q) is non-empty, open and connected (i.e. a region), then
we can do this globally.

For any f € () with Q2 open and connected, there exist g, h € S () such that f = ¢

Algebraically, we can state this as follows: recall that if ) is open and connected, then
() has no zero divisor, hence it is an integral domain. Consequentially, it has a
quotient field (or field of fractions):

Q(A(Q)) = {% L g, h e A(Q) and h # o} = 7(Q)

This is similar to the construction of Q as field of fractions of the integral domain Z
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Definition 3.8. Let 2 C C open, 2z € Q and 0 # f € .#(f2). Then define the
valuation (or order) of f at z;, denoted by ord,,(f) or v,,(f) to be the integer
k € Z such that:

o If z is not a pole of f, i.e. f(zy) # oo, then k& > 0 is the order of vanishing
(zero) of f at 2

o If f(z9) = 00, i.e. zg is a pole, then k < —1 is minus the order of the pole at zg
In particular,

o If ord,, (f) > 0, then z is a zero.

o If ord,,(f) <0, then z; is a pole.

e If ord,,(f) =0, then f(z9) # 0 and f(29) # oo (neither a pole nor a zero).

Combining what we know about the behaviour of functions near zeroes and poles (The-

orem and Theorem , we get:

Proposition 3.4. If 0 # f € .#(Q2) and z, € (2, then

(i) ord.(f) =k € Z <= 3r > 03h € H#(D,(20)) :
(h(20) # 0) and (Vz € Do(z) : f(z) = (z — zo)kh(z))
Here we have k < 0 if z, is a pole, £ > 0, if 2y a zero.

(11> ord,, (fg> = ord,, (f) + ord,, <g>
(ili) If f + g # 0, then ord,,(f + g) > min { ord,,(f), ord.,(g)}

Example 3.15. Let f(z) = (ezfl)Q, = has zero of order 1 at z = 0, while (¢2 —1)° has

zeroes of order 2 at z = 2min, forn € Z
ord,,(f) = ordg(z) — ordy ((62 - 1)2> =1-2=-1
Hence, f has a pole of order 1 at z=10. Forn # 0 we have
ordorin (f) = ordogin(z) — ordariy, ((62 — 1)2> =0—2=-2

Therefore, f has a pole of order 2 at 2mwin, for n € Z\ {0}
Remark 3.11 (C and the stereographic Projection). Let

S* = {(z1,22,23) ER* 12l + 25+ 23 =1} CR®
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Identifying (z1,x9,0) with C we can think of C sitting in R3 as the (1, x2)-plane.
Set N =(0,0,1) and define the map

m:S*\{N} = C

as the map that takes p € S*\ {N} and maps it to 7(p), which is the intersection of C
with the ray in R® that starts at N and passes through p

7 is called the stereographic projection of S*\ {N} into C

Explicitly, 7 is given by

7(p) = w(x1, 9, x2) = ( oot 0) 1 + 2 7

1-1['371—1'3, :]_—ZL'g 1—1'3

Note that the equation of the ray that starts at N and goes through p is:
N+tlp—N), t>0

and consequently
m(p) = N +to(p — N)

where ty is unique positive real number, so that (0,0,1) + to(x1, e, 3 — 1) has third
coordinate equal to 0. Solving this equation for ty gives the formula for w(p) above.
Defining m(N) = oo gives a bijection

7:52 5 C

Conversely, given z € C one checks that

i) ( 2% 2 |zy2—1) e 52\ (N}

|22+ 17 224+ 17 |22+ 1

and 71 (00) := N gives the inverse map. Here we get S* homeomorphic to @, since
both maps are continuous.
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Before we study the values of holomorphic functions using the Residue Formula let
us mention that we can also talk about meromorphic functions on C (as opposed to

() with Q C C).

We have already allowed oo as a value of meromorphic functions. We can also allow oo
in the definition domain and study functions f € C%, where Q2 C C

If a function f is analytic for large values of z, i.e. |z| > }% for some R > 0, then the

function X
o) =1(3)

is holomorphic in a deleted neighbourhood of 0, i.e. in Dy(0)

Definition 3.9 (Deleted neighbourhood at co). We define the delete neighbour-
hood at oo as '
Dg(o0):={z€C:|z| >R}

This notation is designed to have for R < S that

DR(oo) C Dg(oo)

o
Dl =

~| =

Definition 3.10. e For a function f, which is analytic for |z| > & for some
R > 0, we say that f has an isolated singularity at oo, which will be called
removable, a pole or essential, if g(z) = f (%) has an isolated singularity at
0 (which is removable, a pole or essential respectively).

e A meromorphic function in the complex plane that is either holomorphic at oo
or has a pole at oo is called meromorphic in C
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Example 3.16. 1. An entire function is analytic in DR(oo) for every R > 0
E.g. the function f(z) = e* has an isolated singularly at oo, which is essential,
because e has an essential singularity at 0. Hence, e*is not meromorphic in C,
but it is meromorphic on C

2. The function p(z) € Clz] has a pole at co. If p(z) = ag + Y p_, axz”® for some
n € N, then p (%) =ap+ Yy %k has a pole of order n at 0

8. The function f(z) = tan(z) does not have an isolated singularity at oo: FEach
Dr(00) includes poles of f with z =5 + kn, k € Z

N
NI

Also note that g(z) = tan (1) has singularities S := { +km) ke Z}, which
1 at z = 0 1s not isolated.

accumulate at z = 0. Hence, the singularity of tan (

z

The following Theorem for meromorphic functions on C

Theorem 3.9. [SS10, Theorem I11.3.4] If f € .#(C), then it is a rational function.
Clearly, each rational function is a meromorphic function on C. Hence, we have

that
M(C) = {g PQe (C[z]}

Proof. Exercise. m

3.3 Applications of the Residue Theorem

The fist apphcatlon is called the Argument Principle: it uses the Residue Theorem [3.6]
applied to £, the logarithmic derivative of f, to count the zeroes and the poles of f

inside a curve
To this end we first note the following simple Lemma:
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Lemma 3.2. Let Q C C be open and connected, also 0 # f € .#(f2), then f7/ €

A (), the logarithmic derivative of f, is also meromorphic in 2. Moreover,
has poles of order 1 at all z; € Q, for which ord,,(f) # 0, i.e. either 2, is a zero or
pole of f

ik

7

a
. "\ _

Vzo € Z§ U Sy : Res,, )= ord, (f)

Proof. Since f # 0, { open and connected, being f € .#(f2), the zeroes of f do not
have a limit point in 2, and % S/

Clearly, f' € .#(Q2\ S¢), where Sy is the set of poles of f. If 2y € Sy is a pole of order
n € N* of f, then 3r > 0 by Theorem such that

Vz € Dy(2) : f(2) = (2 — 2) "h(2)

where h € (D, (z)) and h(z) # 0. Then, for z € D, (%) we have

/ — _—n z M =
f(z) = z— zo)nJrlh( )+ (2 — 20)" 1
= (W(2)(z - =) - nh(Z){W

=:h(2)
where h € A (D, (7)) and h(z0) = —nh(z) # 0 by definition. Hence, for all z € D, (z)
f'(z) = (2 = 20) " Vh(2)

Hence, f’ has a pole of order n + 1 at 2z, (Similarly, if f has a zero of order n at zo,
then f’ has a zero of order n — 1 at zp). Hence, f' € #(Q2) and so is fT e M (Q)

So, for any z € {2 we have

—(n+1)—(—n)=—-1 , ord,,(f) =—n
f = or ") —or =q(n—=1)—-n=— or =n
ordy () =ord () oy () = { =) =n =1 ordy ()

>0 , otherwise
Hence, fTI has a pole of order 1 at the points where ord,,(f) # 0

We can also calculate the residue using

¥z € Di(20) 1 f(2) = (2 — 20)"9(2)
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where g € (D, (2)), g(z) # 0 for all z € D,(2) and n = ord.,(f). Hence, we have:
n > 0 if zg is a zero and n < 0 if zy is a pole of f

Finally, for z € D,(zp) we have

and
'(2)  n(z—20)"""g9(2) + (2 — 20)"g'(2)
Ve € Drleo) Gy = G~ 209(2)
n(z—2)""g(z)  (z—z2)"¢'(z) _ n N J'(2)
(z— 20)"g(2) (z —20)"g(2) (2 — 20) 9(2)
~G(2)e (Dr(20))
Hence

Res,, (—/) =n = ord,,(f)

[]

Lemma [3.2] immediately gives, using the Residue Theorem [3.6] the following result:

Theorem 3.10 (Argument Principle). [SS10, Theorem III.4.1] Let ©2 C C open and
connected, f € () and let im(y) C Q be a circle (or any other curve such that
the Residue Formula holds). If f has no zeros or poles on 7, then

L0 [ )+ Y ed()= Y ord()

2mi 0% f(Z) 20€ZpNint () 20€SpNint(7y) zo€int(7y)
ordz ()70

where Z; is the set of zeroes of f and Sy is the set of poles of f

Proof. This follows from the previous Lemma and Res., <f7/> = ord,, (f)

LR G P (L’): -
o ), i 2 e

zE €int

where Z is the number of zeroes of f inside v counted with multiplicity (to express the
order of zero) and P is the number of poles of f inside v counted with multiplicity (to
express the order of pole). O
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Corollary 3.1. Let f € C[z] be a polynomial. Choose R > 0 large enough, so that
all zeroes of f are inside Dg(0), then

O P
/CR(O) f(2) dz = deg({)

We have the following Corollary of the Argument Principle Theorem [3.10] which says
that a holomorphic function, when perturbed slightly, does not change its number of
ZEroes.

Theorem 3.11 (Rouché’s Theorem). [SS10, Theorem I11.4.3] Suppose f, g € °(12)
for an open set 2 C C, which contains a circle C' and its interior. If

Vz e C:|f(2)| > |9(2)|

Then f and f + g have the same number of zeroes inside of C'

Proof. For t € [0,1], define fi;(z) = f(2) + tg(z) so that fo(z) = f(2) and fi(2) =
(f +9)(2). Note that for z € C' it results that
R = 1£:) + t9(2)] = [[£)] = tl(2)]| = [£2)] = tlg ()] >
> |9(2)] = tlg(2)| = (1 = )|g(z)] = 0

given the assumption. Hence, we have that Vz € C : } ft(z)| > 0 and therefore f; has
no zero in C'
Note that if we can show that

1R
"= o o f) ™

is a constant, this will show that f and f+ ¢ have the same number of zeroes inside of C'

By Argument Principle applied to f;(z) (which by the above consideration has no
zero in C'), we have that

1 /
ny = — ft (Z> dz
2mi Jo fi(z)
counts the number of zeroes of f; inside of C', in particular it is integer valued.

Note that n; is a continuous function of ¢, since 222 is jointly continuous on [0, 1] for

all z € C, as both f/(z) and f;(z) are continuous and f;(z) # 0 for all z € C
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Recall: from Real Analysis we know that, if
h:la,b] x [¢,d] - R

is continuous on [a, b] X [¢, d], then F(t) := fcd h(t,z)dz is continuous on |a, b].
Using this gives that
1,

2mi Jo fi(2)
is continuous and since n; is also integer valued, it must be a constant (otherwise the

Intermediate Value Theorem [EW22| gives the existence of ty € [0, 1] such that n,, is
not integral). Hence, ng is the number of zeroes inside of f and n; is the number of
zeroes inside of f + ¢, so finally

1) L[ (f+9)C

o )
o Cf(z)dz_no_nl_% c(f+g)(2)dz

Example 3.17. We use Rouché’s Theorem to show that the polynomial
p(z) =25+ 82" + 23 + 22 +3

has four zeroes inside of the unit circle C1(0)

The idea is to write p = Big + Small on C1(0), such that Big(z) = 82* = f(z) and
Small(z) = 254 2 + 224+ 3 = g(2), so: |g(z)| = 2%+ 2 + 22 4+ 3| < 82 = | f(2)] on
C1(0), so with |z| =1

|28+ 22+ 2243 < |2+ 2P+ 2l2| +3=1+14+2+3=7< 8= 8Jz|*

Hence, by Rouché’s Theorem f(z) = 82* and (f + g)(2) = p(2) have the same
number of zeroes inside the unit circle. f has four zeroes (counted with multiplicity)
and so does p

Example 3.18. Rouché’s Theorem can also be used to give a “m'aﬁ” or simple
proof of the Fundamental Theorem of Algebra.

Let p(z) = 24 + ( Z;i akzk> + ag for which, if |z| is large enough, the term |z|¢
dominates. Choose R large enough, so that for f(z) = 2¢ and g(z) = ZZ: arz® + ag
we have:

|£(2)] > |a(2)]
on Cr(0) and hence p = f+g and f have the same number of zeroes inside Cr(0). We
obtain that f has d zeroes inside Cr(0) and so does p

Rouché’s Theorem also leads us to two other important Theorems:

4(subjectively) “nice” means “objectively nice”, if said from the Professor.
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Theorem 3.12 (Open mapping Theorem). [SS10, Theorem I11.4.4] Let 2 C C be
an open and connected set. Let f € 7(Q2) such that f is non-constant, then f is an
open map, i.e. sends open sets to open sets in the standard topology of C, namely
form (’)8 to O¢

Proof. Let zgp € U C Q with U € O% and f(z) = wy. We want to show that a
neighbourhood of wy is also contained in f(U), i.e. if w is near wy, then show that
dzeU:w= f(z), .e. w e f(U). If we interpret z as a zeroes of f(z) —w, we have
also
f(z)—w=f(2) —wo+wy —w
—_— Y/

f g

Let r > 0 such that D,(z9) C U and such that Vz € D;,«(zo) : f(2) —wy # 0; this is
allowed, since the zeroes of f(z) := f(z) — wy are isolated. In particular, we have that
|f(z) — wo‘ # 0 for z on the circle C,.(z)

Since C;(zp) is compact and | f(z) — wo| # 0 on C,(2), we can find a § > 0 such that
‘f(z) - wo‘ >0
for all z € C,(2). Let now w € Ds(wp) and define

F:Q—=Cww F(z):=f(z) —w= f(2) —wy+wy —w
—_— ——
=:f =9

We want to show that I’ has a zero inside the circle C,(zp). This will show that
3z € D,(2) : f(z) = w and hence that w € f(D,(2))

We now apply Rouché’s Theorem to f,§ on the circle C,(z), where we have that

|f|>6 and |g <0
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Hence, on the circle C,(zy), we have
1> 1]

and so f and F = f+ g have the same number of zeroes inside D, (2p). Since f=Ff—w
has a zero inside D,(zy), namely 2, we must conclude that 3z € D,.(z) : F(z) =0, i.e.
3z € Dy(20) : f(2) =w, so w € f(Dy(2)) as wanted. O

Remark 3.12. This Theorem|[3.19 states, for exzample, that if f € (D, (z20)) and non-
constant for some zy € C, then it is not possible to that f(z) € R for all z € D,(2),
since any subset of R is not open in C

Theorem 3.13 (Maximum modulus principle). [SS10, Theorem II1.4.5][SS10, Corol-
lary T11.4.6] Let 2 C C be open and connected and f € () non-constant, then

Pz € Wz € Q: |f(2)| < |f(20)]

i.e. f cannot attain its maximum in . In particular, if © is bounded and f € C° (ﬁ),
then

max |f(2)| = max |f(2)|

Example 3.19 (Necessity of the boundedness of Q). The assumption that Q is bounded,
hence compact, 1s crucial, as shown in this example.

T T T
AR

Let Q) = {z eC:Im(z) € (—%, %)} be open in C and connected, it is not hard to see

that the set Q is not bounded. Consider the function f(z) = exp (%) on €, then

Flog (2) = exp (€"577) = exp(+ie”)
Hence, for z € 9Q we have |f(z)| =1, but

fla) = exp(e”) 7% oo

which does not exists in R
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Proof of Theorem[3.15 We first note that Imax, q | f (z)}, since Q is a compact set
and f € C°(Q), as shown in [EW22].

Let f € () and non-constant. Suppose also on the contrary that f attains a
maximum at zg € 2. By the Open mapping Theorem [3.12] if f is an open map, by
letting D = D, (z9) C Q, then f(D) is open in C and contains f(zp)

Hence f(D) contains a disc D around f(z) and therefore there are points z € D such
that

}f(zoﬂ < ‘f(z)|

which contradicts the assumption that |f| attains its maximum at z; (in any disc in C
one can find such points).

If Q is bounded and f is non-constant and continuous, then ‘ f (z)| attains its maximum
on Q, since it is a continuous function on a compact set, as shown in [EW22]. By the

first part of the Theorem, this point where f attains its maximum cannot be inside (2.
Hence, it has to be on the boundary 2\ 2 = 09 n

3.4 Homotopy and simply connected domains

The key to understand the general form of Cauchy’s Theorem is the idea that if
f e Q) and if we “continuously deform” ~y to 7, while staying in Q2 and keeping
the endpoints fixed if the paths are not closed, then

/V ez [ fep

for the two paths 7q : [a,b] — Q and 7 [a, b] — Q, either closed or with fixed endpoints.

Q
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Not closed curves of this type curves are called homotopic with fixed endpoints: this
means that for each s € [0, 1] it exists a curve 7, in Q parameterised by 7(¢), hence
Vs : [a,b] = Q such that

and such that at s = 0 we have v5(t)|,_, = 70(t) and at s = 1 we have v5(t)|,_; = 7 (?).
All this should be done continuously.

Definition 3.11 (Homotopy). Let 2 C C be open.

e Let vy : [a,b] = Q and 71 : [a,b] — Q be two curves such that y(a) = 71(a)
and vo(b) = 71(b), i.e. they have the same endpoints.
We says that 7, is homotopic to v; in {2 with fixed endpoints, and denote
it by vo ~q 71 rel d[a, b], if

SH € CO([a,b] x [0.1]:9). (1, 5) o H(t,5) = 7 (1)
such that
— Vt €la,b]: H(t,0) = v(t) and H(t,1) = 7 (t)
— Vs €[0,1]: H(t,s) = v(t) € C°([a,b]; Q) is a piecewise smooth curve and

Vs € [0,1] : H(a,s) = v(a) = y1(a) and H (b, s) = vo(b) = 71(b), i.e. vs(t)
has the same endpoints as g, 11

e Similarly, let vy : [a,b] — Q and v : [a,b] — Q be two closed curves, we say
that vy is homotopic to ~; in €2, denoted as vy ~q 71, if

3H € C°([a,b] x [0,1];9Q), (¢, s) — H(t,s) =: 7(t)
such that

—Vte [a,b]: H(t,0) = (t)andH(,l): (1)

— Vs € [0,1] : H(t,s) =: 75(t) € C°([a,];Q2) is a piecewise smooth curve in
Q and Vs € [0,1] : H(a,s) = H(b, ), i.e. 7(t) is a closed curve in 2 for
every s € [0, 1]

Note that if clear enough, the notation for fixed endpoints, namely “rel d[a, b]” will here
be omitted.

Example 3.20. 1. If Q = C, then any two closed curves ~y,v, are homotopic. In
particular, every closed curve is homotopic to the constant curve o. : [a,b] —
C,t — c for every c € C
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Yo(h)

Y0

Consider the function

H :la,b] x[0,1] = C
(t,s) = (1 = s)70(t) + sm(t)

H is a combination of continuous functions, hence continuous. Moreover it holds
that:

H(t,0) = 0(t)
H{(t,1) = n(t)
Hia,3) = (1- $)30(a) + sm(a)
H(b,s) = (1= s)y(b) + s(b)

Since yo(a) = Y(b), 71(a) = 11(b) and Vs € [0,1] : H(a,s) = H(b,s). Hence
Vs : [a,b] = C are all closed curves.

Note that geometrically H is defined using the line segment between ~o(t) and 1 (t)
for each fized t € |a,b]. Hence, s € [0,1] varies over the line segment between
Yo(t) and 1 (t) for each fized t € [a,b].

For the constant curve o., we can take the homotopy between o. and vy as

H :la,b] x[0,1] = C
(t,s) — (1 —s)c+ sy(t)
Note that the same definition we used for closed curves vy, v, also gives a homotopy

with fized points, if vo : [a,b] — Q and v, : [a,b] — Q are two curves with fized
endpoints, i.e. with yo(a) = v1(a) and vo(b) = v1(b)

Note that the same formula for the homotopy works for any convex Q0 C C. Ie.
if we have two curves vy, v1 either closed or with a fixed endpoints in a convex set
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Q, then since for a convex set the line segment between any two points is also in
the set, the function defined by

H :la,b] x [0,1] = C
(t,5) = (1 = s)70(t) + sm(t)

gives a homotopy in €.
In particular, this works for Q with the form of a disc.

3. An example of two curves which are not homotopic in §2: if we take 2 := C* and

the curves
Yo - [Oaﬂ'] — Q
t s et
and
Y1t [07 7T] — Q
ts e ¥

Then vy and v, are not homotopic in €2

We will see a simple proof of this when we will see the homotopy version of
Cauchy’s Theorem [2.8. Intuitively, to deform ~y to v1 we have to go through 0,
which is not in Q though.

4. The set Q = C\ (—o0,0] is not convex and therefore we cannot use the previ-
ous formula, but still any two closed curves vo,71 in €2 are homotopic, i.e. we
can deform 7o to v1 in the following way. Then for f € () we have that

|, F(2)dz = [ f(z)dz

Q=C\ (-,0]

V1
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The idea is to choose any point on the real line, say ¢ € R, and the constant curve

o la,b] = Q
t—c

We first deform ~y to ¢ and then c to vy, so

_J et (1 =28) () —c) ,s€
H(t,s) '_{ C+(23—1)E§1(t)—cg )8 €

H is continuous, the only point to check is s = %, hence
1 .
H (t, —) =c=limc+ (25— 1)(%(t) — ¢
2 s—1

To see that the image of H is contained in S for allt € |a,b] and s € [0, 1], check
for example that if t € |a,b] and s € [O, %}, then in case that H(t,s) ¢ ), it means
that for some t, s the value of H(t,s) € R=Y, i.e.

c+(1=2s) (1) —c) <0
= (1—-2s)(n(t)—c) < —c

ve—cl14 1 B 2s <
c=¢ 2s—1) “N\Nas—1)=>"°

But 0 < s < % = 25 >0 and 2s — 1 < 0. Hence, v(t) € (—00,0] but at the
same time y(t) € Q and this cannot happen. For 5 < s <1 is similar.

—c
1—2s

= ()<

Remark 3.13. If 79 homotopic to v1 in Q (either closed or with fixed endpoints), we
write vy ~q 71 and simply write o ~ 1 if ) is fived and clear.

Then ~ is an equivalence relation:
e The curve vy is homotopic with itself via H(t,s) = vo(t)
o Ifyo ~ v with H(t,s), then v ~ vy with H(t,s) == H(t,1 — s)
o If~y ~ v with F(t,s) and v1 ~ 7 with G(t,s), then define

o F(t,2s) ,sel0,%
H(t,s) '_{ G(t,2s—1) ,s€ E%,A

that gives a homotopy between vy ~ ¥

3.5 The Homotopy Theorem

We can now state the Homotopy Theorem.
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Theorem 3.14 (Homotopy Theorem). |[SS10, Theorem III.5.1] Let 2 C C be open.
Let 79,71 be two curves in () that are

(i) either v,y closed curves and homotopic
(ii) or 7o, 71 have the same endpoints and are homotopic with fixed endpoints.

Then, for f € () we have that

/7 ez = A RCE

Yo

e
o O

Example 3.21. 1. Let Q = Dgr(zy) and R > 0 and let im(%) = Cy(z9) with r €
(0, R) as in the following picture.

Then o can be deformed into the point zy by dilation (which can be be thought as
the constant curve for which ¥t € [a,b] : y1(t) = 20), so for [ € ()
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since ¥t € [a,b] : v1(t) =0

Consider the homotopy

H : [0,27] x [0,1] — Dg(20)
(t,s) = (1 —s)e' + sz

In fact, in Dg(z0) any closed curve vy is homotopic to a constant curve. Hence,

we get
JECS
gl

Yo : [0, 7] = Q 7 10,7 = Q
t s e t—e

2. Let Q= C* and

it

The two paths are not homotopic with fixed endpoints, since if they were, then we
would get that for 1 € A(Q) it would hold that

1 1
/ —dz :/ —dz
Yo z Y1 z
1 1 1
/—dz—/—dz:/ —dz =0
Y0 * m % C1(0) #

1
/ —dz =2mi # 0
C1(0) #

We now look at the proof of the Homotopy Theorem [3.14] We will look at the case of
closed curves (in [SS10| one finds instead the version where the endpoints of a curve
are fixed).

and therefore

but

Proof of the Theorem[3.14. 1. A simpler version of the proof is given with the ex-
tra assumption that the homotopy H(t,s) has continuous second order partial
derivatives and

0*H 0*H
t t,s

s at( 5) = 87583( ')

For this we first recall from Real Analysis:

Y(t,s) € [a,b] x [0,1] :

Let H : [a,b] x [0,1] = Q C C,(t,s) — H(t,s) =: vs(t) be an homotopy between
the two paths 79,7, and let b : [a,b] x [0,1] = R be defined as here below.
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Recall: Let h: [a,b] x [0,1] = R, (t,s) — h(t,s)
Suppose that % exists and is continuous, if we define

G:[0,1]] - R
b
s — G(s) ::/ h(t,s)dt
then we get that G is differentiable with

b
G'(s) = %(t, s)dt

We apply this to the real and imaginary part of the following:

1= [ #(e) G s d = [ oo = [ e

J/

-~

=h(t,s)
Also, note that
1(0) = / f(z)dz and I(1)= / f(2)d=
Yo 71
We want to show that 7(0) = I(1) by showing that I(s) is constant. So consider
, ) 0H
1o = [ (oG-
OH OH 0 OH

= / ((f’ o H)(t, 8)$(t’ S)E(t, s)+ (f o H)(t, 8)£E(t’ s)) dt

and note that what is inside the round parenthesis is also equal by assumption to

% ((foH)(t, s)%—[j(t S))

Hence, we have that

= {f(H(t,s))%—Ij(t, s)] : =
— F(H®, s))%H(b, 5) — f(H(a,s)) %H(a, $) =0
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Since H is a homotopy of closed curves for which it holds that
Vs € [0,1]: y(a) = H(a,5) = H(b,5) = 1(0)

and also that

oH oH
Vs € [O, 1] : %(m S) = g(b, S)

Finally, we have that V € [0,1] : I'(s) = 0 and therefore I is constant. In

particular, we obtain
/ f(z)dz :/ f(2)dz
Y0 7

2. For the general proof the idea is the following: if we make a small deformation
of one of the curves ~4(t), say () to 7%(75), so that if we look at a small piece
around a point of vo(t), say t € (tm,tms1) for m € {0,..., N — 1} and N the
cardinality of the dissection of [a, b] and of [0, 1], then we can show that these are
contained in a small disc in €2

s a,b] x[0,1]

~
T

[y

ozl

m-th dissection

Let t € (tm,tms1) for m € {0,..., M — 1} and M the cardinality of the dissection
of [a, b]

H(£,0) =30
i (1) =0

we can apply Cauchy’s Theorem 2.5 in a disc to get

f(z)dz = / f(2)dz
'yém> ’y%m)LﬂoErJo"



3.5. THE HOMOTOPY THEOREM 131

Now, we move over to the whole curve 7, VL using small discs contained in €2 to
get

To make this idea more precise, we need these two facts:
(a) If K = im(H) = H ([a,b] X [¢,d]) C Q, then K is compact (since H is
continuous and [a, b] x [0, 1] is compact, see [EW22]).

(b) A continuous function on a compact set is uniformly continuous.
We then have that (a) implies the following Lemma:
Lemma 3.3. 3¢ > 0Vz € K CQ: D.(2) CQ

Proof. Assume on the contrary that no such e exists. Then Vn € N*3z, € K :
D%(zn) Z Q, ie. Jw, € C\Q: |w, — z,| < £ for any n > 1. This way we get a
sequence (2, )nen- € KN, where K is compact, hence (2, )nen+ has a subsequence
(2n, Jken+ which converges to limy_,o 2,, = 2. Since K is also closed, we have
z € K. Now, because of |w, — 2,| < + for any n > 1, we have for any k € N*

SO (Wp, )ren+ also converges to z. (wy, )ken+ is also in C \ €, so its limit point is
z € C\ Q and this is a contradiction. ]

This Lemma [3.3] together with (b) will allow us to find the small discs that are
contained in €. This is because we can divide the rectangle [a, b] X [¢, d] into small
rectangles such that the images of these small rectangles are contained in small
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dises of radius e

..........

represent the dissections of the two intervals and ¢ > 0. Since H is uniformly
continuous on [a, b] X [c,d], then it exists an N € N* such that

|H(t,s) — H(tm,sn)| <e

whenever

(£, 5) — (tans 50)| <%

for zpmn = H(tm, s,) with ¢, == a + b’T"m and s, := § for m,n € {0,..., N}

Let Qumn := [tm, tm+1] X [Sn, Snt1] for m,n € {0, ..., N — 1}, since the diameter of
Qmn is diam(Qp,pn) = \/Wi < %, it follows that

H(Qmz) € De(zmn)

SN:1

Spe1 = (+1)/N
s, =n/N

where 2, = H(tm,s,) and T, = (tm, Sn), with 20, = H (a, %) and zy, =

H (b, %), we note that in this case zp, = 2y,
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Using induction on n € NN {0, ..., N}, we want to show now that

/W f(z)dz = /W0 f(2)dz

This is clearly true for n = 0, as % = 0, hence we consider n > 1 and assume
that it holds

/%1 f(z)dz = /70 f(2)dz

A fez= [ e

Y

It is enough to show that

4
=

where Yuo1 = H(t7 n_l) and vz = H( n)

N "N
S
SN = 1
xm,n xm+l,n
n/N
i
(n-1)/N
xm,n—l xm+1,n—1
H
sp=0 t
tD =a tN = b
For each m € {0, ..., N}, let
(m) ._ (m) _
IYnTl o 7"771 [ty bm+1] and /y% T ’Yﬁ [tm tmt1]
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and let oy, == {|;,, ., -, . be line segment between z,, ,_1 and 2, ,,, thus oy, =
Uiin_1,2msrn] D the line segment between z,,41,—1 and 2,,41,,; as special case
we consider 0y = [20-1, 20) and O = [ZN -1, ZN.n)

zm+1,n—1

Now we apply Cauchy’s Theorem in the disc D.(zp,,—1) and obtain

(m)
Tn Om+1
N

f(z)dz — f(z)dz — /(m) f(z)dz +/ f(z)dz=0

Summing over m to get the full vz, we have that

[ s@a=X [ e

m=0""Tn-1
N

f(z)dz) =

Om+1

= f(z)dz + / f(z)dz — f(z)dz =

n a
N N N 7
v~

=0

We have 0 = oy, since yn_1 (a) = H (a,%2) = H (b, %) = vanl(b) and simi-
larly y» (a) = = (b), i.e. the curves v, are closed. Hence, we proved by induction
that the integral over vy and over ~; are equal, which concludes the proof.

]

In spaces like C, C\ (—o0, 0] or any convex set, we observed that any two closed curves, or
any two curves with the same endpoints, are homotopic. This leads us to the following
definition.
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Definition 3.12. An open set 2 C C is called simply connected, if it is connected
and any two curves with the same endpoints are homotopic in €2

E.g. C,C\ (—o00,0] and D,(z) are simply connected, while C* is not.

As Corollary of the Homotopy Theorem [3.14] we have that

Theorem 3.15. [SS10, Theorem II1.5.2] Any holomorphic function f € (Q2) on
a simply connected region €2 C C has a primitive. In particular, we have that

Lf(z)dz =0

for any closed curve 7 in €2 and that any two primitives differ by a constant.

Proof. Let 0 C C be simply connected and fix z, € €2, we define F' € C® such that for
any z € €

F(z) = / S

where 7, is a curve connecting zg to z. Note that this is a well-defined function, since
using the Homotopy Theorem and Q simply connected, any two curves 7., 7.
between zy and z satisfy 7, ~ 7,; therefore they give the same value of

L F(2)dz = [y F(2)dz

Z

Let z € Q, if we choose h small enough, so that the image of the line segment
im(ﬁ[z,%h]) g Q, then

F(z+h) — F(z) :/ f(w)dw

Z[z,z-Hl]
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Arguing as in the proof of Theorem or using continuity of f as below, we get that

lim F(z+h)— F(z)
h—0 h

= f(2)

which shows that F'is a primitive of f in €2, as z was arbitrary. IL.e.

F(z+h) — :/ — f(2) + f(2))dw
= f(2) dw + fw) = f(2))dw
/z z+h] /e[z,erh] ( )
[ G- s@)l<h s |rw) - )
Lz z4h) wEim (g[z,z+h])
hence

‘F(z—i—h)—F(z)
h

Being f is of C°- class, it implies that sup .

3.6 Complex Logarithm

For z € C* we want to define the logarithm of z = re? and we want it to be the inverse
function of the exponential function, i.e. w = log(z) if e* = z. A natural candidate is

log(z) = log(r) + i6

where log(r) is the usual logarithm log : Rt — R of the positive real number r. The
problem is that this is not single valued, as 6 is only unique up to an integer multiple
of 2m. Indeed, the argument is multivalued.

Example 3.22. Let z = 1 € C, it holds that ¢® = 1, but also that for any w € 2miZ
the equality e =1 holds.

We want a holomorphic function ¢ € J#(€2), which satisfies
exp ol = 1id

throughout its domain of definition €2
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Definition 3.13. Let 2 C C be open. A (fixed) branch of the logarithm on €,
denoted by logg, is a function in #(£2) such that

Vz € Q:exp (logg(z)) = 2

If Q is clear from the text, sometimes this function is also denoted by log

Note that any function f € () that meets that condition is a branch of logarithm
on {2, but when one is fixed, then it it denoted by logg,

Remark 3.14. 1. Since exp(z) # 0 for all z € C, in order for logg, to exist we need

that

2. If Q = C*, even though exp € (C*)C s surjective, there is mo branch of the
logarithm on Q). Indeed, if there were a f € H(Q) such thatVz € Q : exp (f(z)) =

z, then differentiating on both sides would give
f'(z)exp (f(2)) =1
~

for all z € Q, which then gives f'(z) = % for all z € Q, i.e. % has a primitive in

C*, which would imply that
1
/ —dz =0
c1(0) #

3. If Q is open and connected and ¢ = log, € C* is a logarithm, then ( is also a
logarithm on Q if and only if

which we know it s not.

{ =+ 2min
for some n € Z. Indeed, if { is a logarithm function, then exp (g(z)) = 2z and
exp ({(z)) = 2
Hence, for all z € Q) we have exp (g(z) —{(2)) =1, so for all z € Q we also have

U(z) —U(z) € 2miZ

£(z)—L(z)
27

i.€. 1s a constant integer valued function on ), which is connected. Hence,

its 1mage under W

single point n € Z. Conversely, if 0 = 0+ 2min for some n € Z, then

exp (g(z)) = exp ({(2)) exp(2min) = exp ({(2)) = =

15 connected and is also a subset of Z, therefore it is a
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Theorem 3.16. [SS10, Theorem II1.6.1] Let Q2 C C* be a simply connected set,
then there exists a branch of the logarithm on €2, i.e. a function F' € J(Q2) such
that Vz € Q : exp (F(2)) = 2

Proof. Since 0 ¢ (), then % € () and since € is simply connected, we have that
then 1 has a primitive in 2 that we call f(z)

Let G : C* such that z — G(z) := zexp ( — f(2)), since f'(z) = 1 we have that

G'(2) = —zf'(z)exp (— f(2)) +exp (= f(2)) = —exp (= f(2)) +exp (— f(z)) =0

Since €2 is connected, it follows that G(z) = ze~/(*) = a (constant) necessarily, for some
a € C. Moreover, since exp # 0, z # 0, also a # 0, so we obtain that it exists b € C
such that a = exp(b) and therefore, by algebraic manipulations on G, that

exp (f(2)) =
Hence, let F' € C% such that z — F(2) := f(2) + b, then

exp (F(z)) = exp (f(2) + b) = exp (f(z)) exp(b) = =

=a

ISI IR

Z
a

and so F'(z) is a branch of the logarithm on O

Definition 3.14. Let C~ := C\ (—o0, 0]. The principal branch of the logarithm
on C~ is the unique function log.- € #(C~) such that log.- (1) = 0. This particular
log- is also denoted by Log (with capital L) or Loge-.

Proposition 3.5. If z = re® € C~ with r > 0 and 0 € (—n, ), then the principal
branch of the logarithm is given by the formula

Loge—(z) = log(r) + i = log (|2]) + i Arg(2)

The common notation to use for the Principal branch is Log

Proof. Let f € 5£(2) be such that

f(z) = /% %dw
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hence, a primitive of % by Theorem ‘EI, where we take a path 7, in C~ which starts
at 1 and ends at z. Note that fm Ldw = 0, hence loge— (1) = 0. This implies that
this branch of logarithm is equal to the principal one (we are going to use the usual
notation for this branch from now on).

If z = re’ with r < 1, take the path v, that goes on the real line from 1 to 7, then on
the circular arc to z, so

1 —0 Sy — 1
d _
Log(z) = —/ &y / Wi.t dt = log(r) +if
r X 0 re N——
—— ~ ~~ the real one

on the z-axis  on the arc z = re~% for t € (0, —0)

Instead, if » > 1, we take the path

C
4
r Yz
7B
1 r
and so similar calculations give the result (Exercise). O]

Notation: From now on, if not specified, log = Log
Remark 3.15. 1. The identity

Log(z) + Log(w) = Log(zw)
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does not hold in general for all z,w,zw € C~, but if w = ', z = se*® and
zw = sre? with o, 3,0 € (—m, ), then exists v € {—2m,0,27} such that

0=a+ 5+
Then
Log(zw) = log(rs) + i0 =

= log(r) +1log(s) +ila+ 5 +7) =

= (log(r) +icr) + (log(s) +1if) + iy =

— Log(w) + Log(2) + iy
In particular,

Log(z) + Log(w) = Log(zw) <= vy=0<= a+ f € (—m,7)
The condition is satisfied whenever Re(w) > 0 and Re(z) > 0, hence in the real
positive half plane H.
2. For the principal branch of the logarithm, Log, we have the following Taylor ex-
pansion
Vz € Di(1) : Log(z) = i ﬂ(z -1
1 . n=1 n
To see this, we differentiate both sides: on the left we have %, while on the right
we have
S = ) = g =
n=1 n=0 1- (1 a Z) o
Hence, log and Y7, %(z — 1) only differ by a constant. Looking at z = 1
we obtain that the constant is 0 and with it the result.
3. We have

w = Log(z) = log(r) +i0

E
B

w — plane
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The image of a punctured circle around 0
{z€C :|z| <r and Arg(z) € (—m,7)}
is the vertical interval
{z € C: Re(w) =log|z| and Im(w) € (—m, )}
where if r < 1, then Re(w) < 0 or if r > 1, then Re(w) >0
The image of {z € C : Arg(z) = 8}, a ray from 0 to oo, is the horizontal line
{weC: Imu) = 6}
4. We can define a holomorphic branch of the logarithm on any cut plane of the form
Q,:=C\ ({z € C: Arg(z) =a} U {O})

for o € [—m, |, such that

w = logq_(2) = log |z| + i , with 0 € (a, a + 27)
and consequently
0 = Arg(z) + «

Branch cut e ___.

l s i(a +2m) l
z - plane o/'m w - plane

///// i

SN\e FEESEEssss=sqs===sss==222

5. Let Q C C* be simply connected and logg, € C® a branch of the logarithm. Let
a € C and z € Q). We define

«

2% = exp (alogg(z)) =: [2°]

Note that this definition depends on the choice of the branch of the logarithm logg,:

if we choose another branch of the logarithm, call it ¢, as ¢ = logg +2mik for some
k € Z, then

[2%]e = exp (a(logQ(z) + 271-2']{)) _ o 2mika

If we set 2 = C, if we choose the principal branch of the logarithm with Log(1) =
0 and a = % for m € N, then

h o Los(s)
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satisfies

m
1\ 1 1
<Zm) _ Hem Log(z) _ M Log(z) _ eLog(z) — 5
J=1

Example 3.23. Let Log be the principal branch of the logarithm on C~, then

b hrosd)

1
218) exp(2)
mi/2

(e ) - -—-—-—-—-@====== 6 A 1 ion

T.N = re'? ,._‘(_1/2)1og(r) to B .1 e

S S L ° i0 :: T

et A1 2)log(r) + b L S

SRR SEEE !

Note that for z € RT, the value of 22 s the usual positive square Toot.

If we choose another branch of the logarithm in C~, for some k € Z, e.q.

loge- x(2) := log(r) +i(0 + 27k)

then

ot = o (Jloge i ) = rtet = = et = et ot = (1)t [#]

i.e. infinitely many choices for the branch of the logarithm give only two different choices

for \/z (where we wrote [z% for the principal branch of the square root).

For the choice loge- 1(2) = log(r) +i(60 +2m) we have (always with r > 0 and Arg(z) €
(m,3m))

1
2 log(z) exp(2)
o /\:2?4%:::::::: T T
T _Ti/2 | ]\: _* (1/2)log(r) +in !

—————— ‘ e ‘ \/;ei” _ _\7; :t
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Definition 3.15 (Logarithm of a function). Let  C C open and f € (), a
function g € () such that

(z) = e
is called a logarithm of f and (if fixed) is denoted by logg(f) or log(f) in the sense
of composition, i.e. logg(f) = logg of

Remark 3.16. The logarithm of a function is in general not a branch of logarithm on
any subset 2 C C

Finally, we have that if f € 2(Q) on a simply connected region €2 ad f is non-vanishing
in all of 2, then f has a logarithm in €2,

Theorem 3.17. [SS10, Theorem II1.6.2] Let 2 C C be a simply connected region.
If f € () non-vanishing in all of 2, then Jg € J2(2), called logarithm of f, i.e.
log(f), such that

Proof. Exercise. Define g a primitive of fo O

Corollary 3.2. If f € (Q2), non-vanishing in all of a simply connected region
) C C, then f has a square root in €2, i.e.

Ih e #(Q): h2(2) = f(2)

Proof. Let

]

Before we move to conformal maps in the next section, we mention that there are
various ways to look at simply connected regions. This is taken up in the book in the
Appendix B [SS10].
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We have seen that if  is simply connected (i.e. such that any two curves in Q with
same endpoints are homotopic), then for all closed curve v in Q and for all f € J#(Q)

we have
/f(z)dz =0

Definition 3.16. A region 2 C C is called holomorphically simply connected,
if for all closed curve 7 in Q and all f € J2(Q)

/Wf(z)dz =0

Clearly, we have with Cauchy’s Theorem or the Homotopy Theorem that
Q2 simply connected = ) holomorphically simply connected

In fact, the converse is also true, as we have

Theorem 3.18. Let €2 be a region, then

2 holomorphically simply connected <= 2 simply connected

The other direction
) holomorphically simply connected => €2 simply connected

uses the Riemann Mapping Theorem (which we will see soon).
For bounded regions we also have

Theorem 3.19. If 2 is a bounded region in C, then

2 is simply connected <= C \ €2 is connected

The proof of the direction: € bounded and simply connected = C \ Q2 connected, uses
the notion of winding numbers, which we are going to briefly discuss as next, since it
also leads to the natural generalisation of the Residue Theorem

Remark 3.17. In the above Theorem[3.19, the assumption that Q is bounded in C is
important, since the infinite strip is simply connected and unbounded, its complement
has 2 components. However, if the complement is taken in C= CU{o0}, the conclusion
holds if €2 is bounded or not.
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3.7 Winding numbers

See Appendix B in [SS10].

We have seen that for f € 7#(Q2), for some Q C C simply connected, if 1,2 are two
closed curves such that v; ~q 72, then by Theorem [3.14

/ﬂf(z)dz = /W2 f(2)dz

We want to generalise it to f € .#(f2), hence we want to understand the integral

/fdz

Recall: If f € .#(), 20 € Q, im(y) = 0D, () and D,(z) C Q, then

/f(z)dz =2mi Z Resy, (f)

we (SyNint(7y))

for some v in Q and f € .#Z(Q)

with V¢ € [0,27] : y(t) = 20 + 7(t)e??® in Q C C for Q open and for some functions 7, §
of class C'! such that V¢ € [0,27] : r(t) > 0 and r(0) = r(27), 6(0) = 6(27)
The same proof we gave for the Residue Formula for a circle works also here for

/f(z)dz = 2mi Z Resy (f)
v we(SyNint(7y))

The Homotopy Theorem [3.14] gives the following first generalisation of the Residue
Theorem [3.6

Proposition 3.6. Let 2 C C be open and let f € .#Z(Q). Let V := Q\ Sy so that
fe A (V). Then

(i) If 71,72 are two closed curves in V' C Q, which are homotopic in V', then

/71 f(2)dz = L2 f(2)dz

(ii) In particular, if 45 is a circle (with counterclockwise orientation), then

/f dz_/f )dz=2mi > Resy(f)

weSyNint(y2)
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Proof. (i) This is a special case of the Homotopy Theorem [3.14] since f € (V)
and 71 ~v 72

(ii) Follows from the previous point and the Residue Formula [3.6]

AN
S/

Y1

To look at more general curves, we first introduce the winding number of a curve.

Definition 3.17. [SS10, Appendix B p.347] Let 2o € C and 7 a piecewise smooth
closed curve in C, such that zy ¢ im(vy). The winding number of v around z; is

defined as ) i
: 2
w~(20) = ind,(29) 1= el R
y

<Y/

The winding number is also called the index of v around 2z, and denoted by
ind,y(Zg)

Why is this called the winding number?
Remark 3.18. To get a feeling for why this is called the winding number:

1. If y(t) = 2o +re fort € [0,2mn] and for n € N, i.e. the circle with center z
traced n times counterclockwise. Then
1 d 1 2mn -, it 1 2mn
/ 2z ire dt
v

wy(20) = i

dt =neN

z—zy 2mi ), ret 21 Jo

2. On the other hand, if y(t) = zo +re® fort € 0,27, but we are looking at a point
20 7& z1€C

1 dz 1 0 , 21 ¢int(y)
= — = Res:; = ’ .
wy(z1) 274 /7 z— 2 Z s (z - z1> { 1,z €int(y)

zeSNint(vy)
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So at least, when v is a circle, then the integral ﬁ fv ZZI indeed tells us whether

v wraps around z; or not.
“To get an intuition”: For a general smooth v : [a,b] — C with v(a) = v(b) and z
inside the path, the following imprecise and really not completely correct argument
might give an insight as to why it is called winding number.

From Real Analysis we might be tempted to write this last integral as
b
log (7(t) — 20) ‘
But of course this is not correct, because y(t) — zo is complex valued and if v wraps
around a point zg, then we cannot define an analytic branch of log (y(t) — 20) on C\{zo}

If we think of Log(z) = log|z| 4+ i Arg(z) and recall that the difficulty in defining the
logarithm comes from choosing the correct value of the Arg(z), we can look at

/ z —1 2 dz =log (y(b) — 2) — log (v(a) — 20) =
=08 (0) = o]+ A (0] =) - <log Iv(a) — zo| 4+ i Arg (v(a) — Zo)) -

— i(Arg (v(b) — 20) — Arg (v(a) — 20))

The ambiguity in defining Arg (7(75) — zo) for t = a,t = b must be an integral multiple
of 2 and this integer counts the number of times ~ wraps around z

y(0) =)




148 CHAPTER 3. MEROMORPHIC FUNCTIONS AND RESIDUE FORMULA

We have indeed the following Proposition, which shows that w,(z) is always an inte-
ger.

Proposition 3.7. [SS10, Proposition B.1.3] Let v be a closed curve in C and =
C \ im(~y), which is open. Then the map

wy: Q—C
1 / du

Z = —
211 yU—2

takes values in Z and is continuous. Hence it is constant on any connected subset of
2. Moreover w,(z) = 0, if |z| is large enough.

Proof. Suppose v : [a,b] — C is a parametrization of the curve and let
G :la,b] - C

t— G(t) = /t %ds

Note that G(b) = 2miw,(z) and G(a) =0
The Fundamental Theorem of Analysis [EW22] tells us that G is continuous (except

possibly at finitely many points) and differentiable on (a,b) (except at those already
mentioned points) with

Let H(t) = (y(t) — z)e %" in Cl*¥ then

H'(t) =+ )e D — (y(t) — 2)G'(t) e ¢ =0

[ J/

=7'(1)

by the latter result. Hence, H is constant by Corollary and so H(t) = (v(t) —
z)e” %" = ¢ for some ¢ € C. We have that V¢ € [a,b] : 7(t) — z = ce") and

c=cefY =~(a) — 2 =y(b) — 2z = ce®Y

From this it follows that ¢“® = 1 and so G(b) € 2miZ (c # 0, since ¥(t) # z and
e~ G® £ 0).

Since G(b) = 2miw,(2), this shows that w.,(2) is integer valued: being

_ LA
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the integral a continuous function, it is a continuous function of z € Q \ im(y). Being
also integer valued, w.(z) is constant in any open connected subset of Q \ im(7y)

Finally, if M := maxe(o [7(¢)| (it exists, since [a, b] is compact and ~y piecewise of class
C%) and |z| > M, then

1 dw 1 L(y)
_ < - AV
[15(2)] 21 [yw—z T2z - M
where L(7) denotes the length of ~. Since
w—z[ > ||z] = w]| > |2] -

we then have

o3 < o

Hence |w,(z)| < 1 once |z| is large enough, but being an integer means that w,(z) = 0,
if |z| is large enough. O

0

We can now give the general Residue Formula.

Theorem 3.20 (Generalised Residue Formula). Let © C C be open and simply
connected, f € #(Q2) and V = Q\ S;. Let v be a closed curve in V. Then we have

/f z—ZMZw,y ) Res. (f

ZESf

Proof. For any z, € Sy, let PZ{) be the principal part of f at z

N(zo
a_;
Z: ZiZO

for some a_; (29) € C and with N(zp) = —ord,,(f) (since f has a pole at 2y, the order
of that point is negative).

Case 1: Let Sy be finite, then
fer- X
20€S8f

has removable singularities at zyp € Sy, hence has a holomorphic extension to €2
Hence, we have that f fdz =0, as Q is simply connected.
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Hence
[riz= [ | X Pl | iz= 3 /
v v Z()ESf Z()ESf
Recall: f ey = = 0if 5 # 1, since (Z—Z has primitive #Jj and 7 is
closed.
So

v ZoGSf
-y [
20eS; y Z— 20
d
= Z 27ia_y (zo)/ S
Z — 20
ZoESf \ v ,
=w~(20)
= Z 2mia_y (20) w(20) =
20€Sy
= 27 Z Res,, (f)w,(20)
20€Sy

Case 2: Sy is infinite. Pick R > 0 such that w,(z) = 0 if |z| > R and ~ is homo-
topic (so that for the homotopy in question H it hold that im (H ([a, b] x [0, 1])) C

Dg(0)) to the constant cure in 2 N Dg(0) (since 2 is simply connected v ~gq o
(constant curve), which only involves a bounded set). Then Sy N Dg(0) is finite,
since Sy is a discrete set.

Let
f = f|QmDR(0) - Z Pz{)‘QmDR(o) < ‘}f(Q N DR(O))

zoESf
|zg|<R

we have then that f7 f = 0since v is homotopic to the constant curve in QN D r(0)
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Hence

/fdz: > /szodz:
7 y

zoESf
[zg|<R

= 2mi Z Res., (f)w,(20) =

20€S5y
|zg|<R

= 27 Z Res,, (f)w,(20)

Since for |zg| > R, w, (20) =0

3.8 Cauchy Integral Formula

Corollary 3.3. Let € be open and simply connected, f € () and ~ a closed
cure in €, then

Vz e Q\ im(y) : QLm / %dw = f(2)w,(2)

Proof. This is the generalised Residue Theorem |3.20| applied to the function %

g(w), which is meromorphic in Q and has a simple pole at w = 2z and residue f(z) O

Example 3.24. Let f be meromorphic except for poles at z = a,b, c,d, then

/f(z)dz = 2Res,(f) +2Resy(f) + 1 Res.(f)

d

)4
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3.9 Conformal maps and the Riemann mapping The-
orem

See Chapter 8 in [SS10].

Motivating questions:
1. Given two open sets U,V C C, when does there exists a holomorphic bijection
between them, i.e. when is there a bijective f € VU such that f € (U, V)?
We are going to see that the inverse map f~! € UV is automatically also holo-
morphic (compare open sets using holomorphic functions).
2. Given an open set €2 C C, what conditions guarantee that there is a holomorphic

bijection from  to D (where D is the unit disc)?

Why D? D has a very nice geometric structure and we developed most properties
of holomorphic functions for D first. If there is a holomorphic bijection between
2 and D we can hope to transfer questions about holomorphic functions on €2 to
holomorphic functions on D

Remark 3.19. 1. We'll start by examples of simple maps and show for example
that there is a holomorphic bijection between D and the upper half plane H.
We can then compose simple maps to get more examples of holomorphic bijections.
2. We will then prove Schwarz’s Lemma, which says any f € R such that f(0) =0
must satisfy
(a) VzeD:|f(z)] < |2|
(b) If for some zy # 0 we have |f (20)| = |20|, then f is a rotation.
(c) |f'(0)] <1 and if equality holds, then f is a rotation.

3. Schwarz’s Lemma will then give us all holomorphic bijections of D to itself.

4. Then we will get to Riemann Mapping Theorem, which says that if Q # C or
Q # 0 and is simply connected, then there is a holomorphic bijection between €
and D
More precisely, for any zy € §) there exists a unique f € D such that f (z) =0
and f"(z) >0

Remark 3.20. The Riemann Mapping Theorem says that there are only three kinds of
simply connected domains in C (up to holomorphic bijections) (), C and D

Note that there can be no holomorphic bijection f € D between C and D, since in that
case f would be bounded and entire; hence by Liouville’s Theorem [2.8 f is constant.
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Note that for Q) to be connected is also a necessary condition, since D is connected. The
same is true for simply connected, since if f € VY is a holomorphic bijection with U
simply connected, then so is V.

Definition 3.18. Let U,V C C be two open sets in C.

e An injective map f € S (U,V) is called a conformal map from U to V.
These are denoted by Mon (U, V')

o [f f is bijective, then it is called a conformal equivalence or biholomorphic,
or a holomorphic isomorphism and U and V are said to be conformally
equivalent. The set of such functions is denoted by Isom_»(U,V)

e If U =V, a conformal equivalence is called a (conformal) automorphism
and the the of all such (conformal) automorphisms is denoted by Aut (D).

Remark 3.21. Note that there is a small difference in the definition of conformal
compared to the book [SS10]: in the book f is taken to be bijective.

Also, from now on, unless otherwise specified, we are going to assume that U,V C C
and that they are open in C

Proposition 3.8. [SS10, Proposition VIII.1.1] If f € VY is conformal (i.e. is holo-
morphic and injective), then

VzeU: f'(z) £ 0

The inverse of f, which is defined on the image of f, is holomorphic, i.e. f &
im(f)V C VU is a conformal equivalence and f~' € U™ is also a conformal
equivalence.

Proof. Suppose f is injective and holomorphic, but on the contrary 3zo € U : f' (z9) =0
We want to show that f cannot be injective. Let h: U — V, 2z +— h(z) := f(2) — f (20),
this implies that h (zo) = 0 and A’ (z9) =0

o If k =ord., (f(2) — f (20) ), then by our assumption k > 2

o If £ = o0, then V2 € U : f(z) — f(20) = 0, hence f is constant and cannot be
injective.

Therefore, we can assume that £ < oo, by Theorem we have that 3r > 0 such that
for all z € D, (2)
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f(k) (20)

f(z) = f(z0) = o (z = 20)  + G(2) (z — 2)"*" =
=a(z—z2)" +G(2) (z — 20)""

where % =:a # 0 and z € D, (). Since the zeroes of f’ are isolated, we can also
choose 7 > 0 such that f'(z) # 0 for z € D, (20)

The idea is to use Rouché’s Theorem to show that for any w € C
Gw:U =V, 2= g,(2) = f(2) — f(20) —w

k : .
has the same number of zeroes as a (z — 29)" — w in some disc around 2

Since a (z — 20)* = w has k solutions, we will have that g,(z) = f(z) — f (z0) — w
has k zeroes for z sufficiently close to z;. Denote these zeroes of g, by z1,..., 2. If
w # 0, then those zeroes are not equal to zq (if for some k we had that z; = 2, then

0= gw(20) = [ (20) = f (20) + w=w #0).
Since f'(z) # 0 for z € D, (), we have that ¢/ (2) = f'(z) # 0 for z € D, (z)

Hence, each zero has order 1 and they are distinct, but that means that there exist k
distinct points 21, 29, ..., zx such that f(z;) = f (20) + w, i.e. f is not injective.

To show that in some neighbourhood of zy the function g, (z) = f(2) — f (20) — w has
k zeroes, we write the following expansion for z € D, (z)

f2)=fz)—w=a(z—2) +G(2)(z—2)"" —w
= (a (2 — 2)" — w) +G(2) (2 — 2"

We apply Rouché’s Theorem as follows: let ¢ := sup|,_,,_- |G(z)|, c exists since
3

G is continuous. Pick s € (0, min{%,1}) and assume that |w| < |a] ( ) . On Cy(20),
by inverse triangular inequality one has

k k
e o] 2 e (3) 2113

and that
‘G(z) (z — zo)kﬂ‘ < st

| g
that g(z) = f(2)— f (20) —w has the same number of zeroes in D, (z) as a (z — z9)" —w,

So, if |a (%) > cshtl e s < then we can apply Rouché’s Theorem [3.11f to get
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for |w| < |a] (%)k < and s < min{ oz 1}) as wanted.

2k 2
Note that if w = re?, then the zeroes of a(z — zo)k — w are at {z,}FZ¢, where
1 . /9tomm 1
Zn — 20 = |%|*F e(“F) for n € {0,....;k — 1}, but then |z, — 20| = (%)k < 5 <s.

Hence, all k roots of a (z — zo)k — w are inside Dy(z)

The rest is straightforward: f € f(U)Y is clearly bijective. Without loss of generality,
assume that f(U) = V. The inverse function f~! € UV is continuous, since f € VY is
an open map.

Let wy € V and w € V close enough to wy. We write w = f(z) and wy = f(zp). If
w # wp, then we have

Frw) = f ) zezm 1
w—wy ()~ f(x) L

Since [ (29) # 0 and f~! is continuous, we have

lim 7 (w) = /7 (wo) = lim ! = !
w—rwo w — wo Z—20 f(Z)—f(Z()) f/ (ZO)
Z—2Z20
Hence f~' € (V) with V = im(f) O

Remark 3.22. 1. Proposition says that if f € VY is a conformal equivalence,
then f~1 € UV is automatically a conformal equivalence.

2. The conformal equivalence is an equivalence relation:

o u ~. u, since id : U — U,u — u as the identity map s bijective and
holomorphic

o IfU~.V with f e VY, thenV ~. U with f~* € UV
e IfU ~. Vand V. ~. W with f € VY and g € WV respectively, then

go f € WY gives a conformal equivalence between U and W

3. Conformal equivalence allows to transfer the holomorphic functions on one set to
the holomorphic functions on the other set.

Corollary 3.4. If f € VY is a conformal equivalence, then the map

T: (V) — #U)
¢ pof

where ¢ € CV is a holomorphic function on V, is a liner isomorphism of vector
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spaces with inverse

1. (U) — H(V)
o f

where ¢ € CY is a holomorphic function on U, i.e. T is an isomorphism of vector
spaces, so it holds that

T (agr + bda) = aT (¢1) + 0T (¢2)

for a,b € C and ¢y, ¢y € (V)

Example 3.25 (The disc and the upper half plane). Let H := {z € C : Im(z) > 0}
be the upper half plane and D := D,(0) = {z € C: |z| < 1} be the unit disc. Then the

map
f-H—D

z—1

zZ4+1

Z =

15 a conformal equivalence, so
1+w
-1 .
w) =1——
) =i

N\
w — plane

-

This example shows that the property that a set is bounded is not preserved under
conform equivalence.

Proof of the FExample|3.25. First note that for any z € H it holds:
z—1
Z+1

<1

[f(2)| =

since the distance from z to ¢ is shorter than the distance from z to —¢, which is in the
lower half plane.
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Moreover, f is clearly holomorphic, since Vz € H : 2z + ¢ # 0. Similarly, the map

g:D — H, 2z~ g(w) :=i1t2 is holomorphic.

1—w
Lastly, to see that g(w) € H for any w € D, we look at

img(u)) = L2 ~ L GED)

1 (1—|—w 1+w) 1 ((1—w)(1+w)+(1—w)(1+w)>

“2\l-w 1-w/) 2 11— w|?
1 — 2

= [ >0 ,since |w|<1
11+ w|?

Hence g indeed goes from D to H. Finally a direct calculation verifies that f(g(w)) = w
and (go f)(z) =zand so g = f! O

Note that the map f from Example takes the real line to the boundary of the disc
with f(0) = —1, f(1) = —i and f("c0”) =1

Example 3.26 (The map z +— z%). Let U := {z € C: Arg(z) € (0,2)}, so

f:U—-H

2 22

maps the first quadrant to H

7.

W

z —plane w — plane
Frw) =w'?

In that regard, the map
g H—=U

1 1
2 22 = exp (5 Log(z))

18 1ts 1nverse.
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o (f is injective) Let 23 = 23, then z; = +29 and only one of 23, —29 can be in U.

Since z1, z0 € U we have that z1 = 2o

o (f is surjective) Let w = re with 0 € (0,7), so w € H, then 22 = w has 2

solutions, namely
1 0

160 ..
and z =r2ez 15 in U

In general, let n € N* and let the sector S, = {z € C: Arg(z) € (O, %)}, then the map

f:8, —H
z 2"
flz)=2z"
§ \\ N\
z — plane n/n w — plane
Fw) =wih

with inverse
fffH— S,
1 1
W wn = exp <— Log(w)>
n

Example 3.27. Any horizontal strip of length 27 is conformally equivalent to a cut
plane (slit plane). The map

fH—-C

Z|—>—Z2

maps H to C~ := C\ (—o0,0] and the map

f:H—C*
2 22

maps H to the slit plane cut of the positive reals CT := C\ [0, 4+00).
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fz) = exp(z) = w w — plane

z —plane

e |

W)N

f(@) = exp(z)

In particular, for V= C*

fH @) =log.(w)

N

with a fized branch of logarithm on C*, such that loge+ (—1) = im

Remark 3.23. [t is to notice that conformal inequalities do not preserve the bounded-
ness property of sets.

Example 3.28 (Important non-example). Let U := C and V := D, then there is no
biholomorphic map between U and V', since if there were such a map

f:C—>D

which is holomorphic. Then f would be bounded, since ‘f(z)| < 1. Hence by Liouville’s
Theorem (2.8, it is constant, hence is not injective. Hence

C . D

Riemann’s Theorem says that any simply connected domain U, which is a proper
subset of C, i.e. U # () and U # C, is conformally equivalent to ID.

This leads to the following important Theorem:
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Theorem 3.21 (Riemann mapping Theorem). |[SS10, Theorem VIII.3.1] Suppose
Q c C is proper (i.e. ) # Q # C) and simply connected. Then

Q~.C

and if zgp € 0, then there is a unique conformal equivalence F' € (2, D), such
that F' (z9) = 0 and F’ (z) € (0,+00) C C

From which follows that

Corollary 3.5. Any two proper simply connected open subsets of C are conformally
equivalent.

Remark 3.24. Riemann’s mapping Theorem is remarkable: it classifies all simply

connected open subsets 2 C C, up to conformal equivalence. There are three of them,
namely (), C and D

The proof is though not constructive, as we will see. In general, it is not easy to find
an explicit map. During the rest of the course we will prove this Theorem. The strateqy
of he proof is as follows:

1. (Uniqueness) This is going to be easy. It boils down to finding all automorphisms
of the unit disc, since if we have two conformal equivalences

f129—>D
fQIQ—>]D)

then
fQOfl_lz]:D—>]D)

15 an automorphism of D

2. If ) #Q # C, we will show that there is a conformal map [ : Q — D with
f(z0) = 0. Hence Q2 is conformally equivalent to an open subset of D, hence

3. The second step shows that the set F = {f € D% : f is conformal and f (z) = O} #*
0. We will see that s := supser | [’ (20) | exists and we will show that 3f € F

such that ‘f’ (20) ‘ is maximal, i.e. the supremum s is taken. This f has “mazimal
expansion speed”.
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4. The f we found in the third step is surjective.
i0

If this is the case, writing f' (z0) = se® and |g(z) = e f| gives the map we are

looking for, namely g € D with g (z) = e f (20) =0 and ¢’ (20) = 5 > 0

Step 1: Automorphism and uniqueness
For the (conformal) automorphisms of D we have

Theorem 3.22. [SS10, Theorem VIIL.2.2] If f € Aut»(D) is a (conformal) auto-
morphism of D, then

0 e RIaeD: f(z) = eiea—_f
1—az
satisfying
f(0) = e’a
F1(0) = e?(Jaf* - 1)

Conversely, every map of this form is a (conformal) automorphisms of D

Remark 3.25. 1. Note that an immediate Corollary of Theorem is that the
only automorphisms of D that fix O are rotations, since

fO)=e’a=0=a=0

0 0

= f(z) = -2 =¢

for some 6 € R

2. This Theorem is enough to prove the uniqueness of conformal equivalence
f eD®

Proof of the uniqueness of F' in Theorem [3.21]. If f1, f5 are two such maps with f; (29) =
f2(20) = 0 and f] (2), f5(2) > 0, then g := fo0 f{* : D — D is an automorphism of

D. Hence, by Theorem [3.22
o ¥ <

9:) =

for some § € R and o € D. Since fi (20) = 0, f2 (20) = 0 we have g(0) = (foo f;1)(0) =
0,50 a =0 and g(z) = —€"z for z € D and ¢'(z) = —€*. Then
1

—e® — J(0) = f (! (f'(0) = f5 (20
90 = £ (7)) - () ©0) = £ (o)
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Hence ,

J% (20) — ¢ <

i (%0)
since f] (29) > 0 for k € {1,2}. It follows that —e € R>° and hence that 6 = 7 + 27k
as e = —1. Also, o = 0, so we can conclude that

9(z)=z=fi=f

The proof of Theorem [3.21] uses a simple, but important Lemma:

Lemma 3.4 (Schwarz). [SS10, Lemma VIIL.2.1] Let f € (D, D) with f(0) = 0.
Then

(i) Vze D : [f(2)] < |7]
(i) If for some zq # 0, we have | f (20) | = |20/, then f is a rotation.

(iii) |f/(0)] < 1 and equality holds if and only if f is a rotation, i.e. 30 € R : f(z) =
ez

Remark 3.26. 1. (i) and (iii) give conditions on f, so that up to a rotation, f is
the identity map. Since we assume that f(0) = 0, the condition in (ii) about the
| f (20) | is true (|f(0)] = |0]) for zo = 0, but we cannot conclude from it that f
is a rotation. (i) is the necessary condition at 0 to conclude that f is a rotation

(i.e. | f/(0)] =1).

2. This Lemma 1s once again a statement for holomorphic functions. One cannot
conclude for a real differentiable function f : D — D with f(0) = 0 any of

(1), (1), (iii).
Proof of the Lemma[3.4 1t is a consequence of the Maximum Modulus Principle (The-

orem [3.13)).

(i) The assumption f(0) = 0 implies that ordg(f) > 1, so we can define
f(2)

z

g:C—C,z—g(z) =

for z € D. Since ordy(f) > 1 and ordy(z) = 1, in fact g has a removable singular-
ity at z =0, so g € (D, D)

Fix z € D and let 7 € (|z[,1). For w € C,(0) we have, since |f(w)| < 1 on D,
that

1 1
< = = < =
l9(2)] < Joex lg(w)| - e | f(w)] < .



3.9. CONFORMAL MAPS AND THE RIEMANN MAPPING THEOREM 163

(ii)

(iii)

This holds for all z € D,(0). By the Maximum Modulus Principle [3.13] we have
— 1
vz € D(0): |of:)] < -

(the holomorphic function g cannot attain a maximum in D,(0))

This is true for all z € D such that |z| < r < 1, then by letting r — 1 it follows
that

l9(2)] <1
and hence
VzeD:|f(z)] < 2|
We proved that (i) gives sup,p |g(2)| < 1, but the assumption |f (z) | = |20

for some zy € D\ {0} implies that g has a local maximum at z, € D. By the
Maximum Modulus Principle this can only happen if g is constant, hence

dee CVzeD: f(z) =2¢9(2) = cz

Since | f (z0) | = |20| for that 2o € D\ {0}, it follows that |c[ = 1. Hence, ¢ = ¢'f
for some 6 € R and f(z) = ¢¥2

9(0) = lim ey, £6) = F0)

ot

z—0 z z—0 z — 0 o f (0)
o) ‘f’(O)‘ = }g(O)| <1 If }f’(O)} = 1, then again 0 is a local maximum of g and
we conclude as in (ii) that f(z) = ez for some § € R, namely a rotation.

O

We can now give the proof of classification of Aut »(D)

Proof of Theorem[3.23. First note that any function ¢, : D — D of the form

o — 2z

2 valt) = 7o

for o € C with |a| < 1, is an automorphism of D. This since:

1.
2.

Since |a| < 1, then 1 —az # 0 for z € D (as |2]| < 1), so ¢, € (D, D)
Yo 18 injective:

Pa(2) = Pa(w)

a—z a—w

l—az 1-aw
a—|alfw — 2z + azw = a — |af’zr — w + azw
(1-1]a?)z=(1-]a]*)w
Z=w

Hence ¢, is a conformal map ¢, : D — D



164

CHAPTER 3. MEROMORPHIC FUNCTIONS AND RESIDUE FORMULA

3. ¢a(D) C D: This point might look superfluous, but checking this condition guar-

antees that the map is well-defined on its domain of definition, as any argument
will have an image in the codomain. So if || = 1, then z = ¢ and

0

o a—e? o fa—e®\  Lw
¢a(ez)_eie(e—ie_d)_ez (6—i9_a _ez__w

with w := a — €. Hence

—ip W

[pa (¢)] = e

-

By the Maximum Modulus Principle|3.13| we have that Vz € D : [ (2)] < 1 (not
being ¢, (z) a constant map, it cannot have a local maximum inside of D).

. We have that

(00 000) (2) = o — = _ a—lal?z—a+z :(1—|a\2)zzz
aore l—a(£2) l-az—|af+az 1— |af?

Hence, ¢, is its own inverse.
Clearly any rotation R: D — D,z — R(z) = ¢z is also an automorphism of D

Hence

is on automorphism of D

Now, let f be any (conformal) automorphism of D, then 3law € D : f(«) = 0.
Consider g = f o ¢, with g € DP, then g(0) = f(a) =0

Schwarz Lemma (a) applied to g gives
VzeD:|g(z)| <zl
Since g~*(0) = 0, we can also apply the Schwarz Lemma to ¢g~! and get
VweD: g7 (w)] < |w|

Using this for w = g(z) gives

VzeD: |2 = g7 (9(2)| < lo2)]



3.9. CONFORMAL MAPS AND THE RIEMANN MAPPING THEOREM 165

Combined with |g(z)| < |z| we get that |g(z)| = |z|. Once again by Schwarz

Lemma (b), g(2) g

ez is a rotation with some # € R. Hence ez =
(fopa)(2) = g(2)

Replacing z with ¢,(2z) now gives

ewgpa@) = g(@a<z)) = (fowa) ((pa(z)) =
= (fopaowa)(2) = f((vaoa) (2)) = f(2)
using the fact that ¢, o p, = id

Remark 3.27. Combining automorphisms of D together with the Cayley map
F:H—-D
zZ—1
z+1
allows one to find all automorphisms of H in the following manner.

Z =

Theorem 3.23. [SS10, Theorem VIII.2.4] Every automorphism g € Aut ,(H) is of

the form
_az+ b

ez +4d

9(2)

for (CCL 2) € GL2(R) such that ad — bc > 0

Remark 3.28. [t is of interest that one can see that Aut »(H) can be described via the
action of SLy(R) ~ H wia fractional linear transformations.

Remark 3.29. Being these maps invariant under re-scaling by a real factor, we dis-
cover that these (conformal) automorphism are in fact represented in GLy(R) quotient
by R*, namely the projective general linear group PGLy(R), but only considering
those elements with positive determinant, hence a subgroup of it. These elements form
PSLy(R), the projective special linear group, this being the quotient of SLy(R) and
{£1}, and can be seen as a subgroup of the former (of the orientation-preserving trans-
formations).

Over R these two groups are different, in particular the second one being a strict sub-
group of the first one, but for instance over C surprisingly

PGLy(C) = PSL,(C)

This is going to have a greater relevance later in geometry, in particular in the context
of Moébius Transformations.
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Proof. Exercise: read in the book. O
Note that using the map
v Aut(D) — Aut(H)
prry(p)=FlopoF

any automorphism of D is lead to an automorphism of H. Moreover, 7y is an isomorphism
with inverse

vt Aut(H) — Aut(D)
By (B)=FopfoF
Using v we can pull the automorphisms of D to automorphisms of H and show that

they are of the above form.
Now, we move to step two in the proof of the Riemann mapping Theorem [3.21]

Step 2: There is a conformal map f € D%
(i.e. if 2 is a proper, simply connected of C, then it is conformally equivalent to a subset

of D)

We have the following

Proposition 3.9. [SS10, Step 1 in Section VIII.3.3, p.228] Let 2 C C such that
() # Q # C, open and simply connected. Then there exists a conformal map f € D%
such that 0 € f(€), i.e. 2 is conformally equivalent to a subset of D, which contains
the origin.

Proof. Without loss of generality we assume that 2 C C*, hence that 0 ¢ Q. In fact,
being €2 proper, Ja € C : o ¢ Q, by replacing Q with Q@ — o := {z —a : z € Q}, we
can assume that o = 0 ¢ . Hence Q2 C C*; furthermore, since 2 is simply connected,
there exists a branch of logarithm logg, € ()

Note that logg, is also injective, since if
logg(2) = logg(w)
then exponentiating both sides, we get that
z = exp (logg(z)) = exp (logg(w)) = w

and hence logg, is a conformal map.
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Now let w € €2, then note that for any z € 2

logq(2) # logg(w) + 2mi

otherwise, exponentiating we would get

z = exp (logg(2)) = exp (logg(w)) exp(27i) = w

Hence z = w, but then logg(z) = logg(w) results in a contradiction. In fact, logg(2)
stays away from logq(w) + 27i in the sense that

36 > 0 : Das(log(w) + 2mi) Nlogg () = 0
Indeed otherwise, if for all n € N*, say with &, = 1, we got a sequence (z,)nen- € QY
such that ]
‘logQ(zn) — (logg(w) + 27ri)} <

Hence
10gq (2n) — logg,(w) + 27i

and exponentiating and using the fact that exp is continuous, we would get that

n—oo n—oo . . . .
2z, —— w and hence logg(z,) —— logg(w), using the continuity of logg,, which
is a contradiction to logg,(z,) —— logq(w) + 2mi

Now, we can consider the map (for the same w as before)
F:Q-=C
1
logg(2) — (logg(w) + 2mi)

Z =

Note that F' € 7(Q), since
Vz € Q:logg(z) # logg(w) + 2mi

Since log, is injective, so is F' and hence F' is a conformal map. Furthermore, the above
estimate gives

VzeQ: ‘logQ(z) — (logg(w) + 27ri)‘ > 20

Hence
1 1

1

< — <=
logg(2) — (logg(w) +27mi)| — 26 0
and so F'(Q2) C D (0). We can now translate and rescale F to obtain a function f € D%
which contains the origin in its image.

Let f(z) := 2(F(z) — F(w)), then f € C* is conformal, as we have f(w) = 0 and

VzeQ:|F(z) — 0| =

0 (1 1
vZeQ:|f<z>|sZ(3+g)g
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Step 3: An extremal problem
Let € be a proper, non-empty, simply connected subset of C and 2, € €2. By Step 2 we
have at least one f € D such that f(z) = 0. Let

F:={feD": fis conformal and f(z9) =0}

Then F # (). We start by the following (see Step 2 in Section 3.3 in Chapter 8 in
[SS10]).

Lemma 3.5. The set of values {|f’(z)| € R=°: f € F} is bounded in [0, +00).
Therefore, it exists

s:=sup|f (20) | < +o0
feF

Proof. Let § > 0, such that Das (29) € Q and let f € F. The Cauchy Integral Formula

2.6] gives )
S f(z
7 (z0) /C e

Hence, using the standard estimate one finds that

, 1 | f(2)|
1) | < gmdm

1
< =
)
since }f(z)‘ < 1 for all z € Q2. Hence |f’ (20) ‘ is bounded by  for an arbitrary f € F,
thus there exists an upper bound and by consequence of it also the supremum. O

The next Proposition is key and states that the supremum

s =sup | f (z0) |
feFr

is taken.

Proposition 3.10. 3f € F : |f'(z) | = s, hence s = maxser |f' (20) |

The proof of this Proposition [3.10]uses a compactness argument which we will come back
to, but we first see why this is key, in the sense that it gives the conformal equivalence
that we are looking for, between 2 and D (see Step 3 in Section 3.3 in [SS10], p.231).

Remark 3.30. The step 2 shows that ) is conformally equivalent to an open subset of
D, which contains 0
Why are we looking for an extremal function that realises the extremal value s =

supjer | (%0) |7
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f
T

\ f©)
“ NN
AN\

W

We can assure without loss of generality that €2 is an open subset of D that contains 0,
so we can assume that zg = 0

We want to conformally stretch ) to fill D
F={feD": fe () is injective and f(0) =0}

We want to choose a function in F with “maximal expansion”, but what does “expand-
ing” mean? Consider

f(0) =0= f(2) ~ f(0)2

for z mear 0, so if }f’(O)‘ > 1, we say that f is expanding, since the distances between
nearby points are expanding

£ (21) = [ (22) | = |/ (0)]|21 — 22| > |21 — 22

Step 4: f from the key Proposition in Step 3 is surjective

Proposition 3.11. Let f € F be such that ‘f’ (20) | = s, then f € D is a conformal
equivalence (i.e. f is also onto D).

Proof. We want to show that f is a surjection: we assume that it is not, then Ja € D.
which is not in f(€2). We are going to construct g € F with |¢' (z0) | > |’ (20) | which
is going to be a contradiction to

| (z0) | = s = sup |9’ (20) |
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To do this we are going to use ¢, and the square root map. Let

=0, :D—>D

a—z
Z =

1—az
be the automorphism of D, with ¢,(0) = a and p,(a) =0

Then ¢, o f : © — D is conformal and 0 ¢ (p, o f) (€2), since if for some z € Q held
(¢a o (f(2))) =0, then we would have f(z) = , which we assured is not the case.

Since 0 ¢ (p o f)(Q), and Q is simply connected, a logarithm and a square root of of
po [ exist, i.e.

3f € Az € Q: f2(2) = (po f)2)

One can simply take § as primitive of ((‘:;ioo?)/, so that exp (§(z)) = (pa o f)(2)

Note that f is also injective: if f(z) = f(w), then (¢ o f)(z) = (¢ o f)(w). Since o f
is conformal and f, ¢ are injective, we have that z = w

Now, f is not yet the function we want, since f (z9) # 0, as ©(f (20)) # 0, due to the
fact that 0 ¢ (o f)(Q)

Let f(z) = § and consider the (conformal) automorphism of I

(pﬁZ]D)—>]D
Z = 6_72:
1—pz

with ¢3(8) = 0. Finally, let g(z) := ¢g o f € D Then g(z) = 0 and g € J(Q,D),
since f € J(Q2,D) and g € Aut »(D)
Moreover, g is injective, since g and f are injective, also g € F by definition.

Claim. |¢' (z0) | > |/’ (20) |
This will give the contradiction that we are looking for.

Proof of the Claim. Recall: we first looked at ¢, o f as
wao f: 8 ) RN )
Then we took the /- function, call it h

h:(paof)(Q)—D

1
w +— exp (§w>
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and composed it with ¢, o f as follows
fi=hop,of:Q—=D

so that f2 = g, 0 f
Then we composed it with ¢, to get g € D such that

g=psof=psohop,of
W

f
Being these conformal equivalences, we have that gogl og=1f
_ 2
= (p5'09) =¢acf
_ _ 2
=@, o(pzlog) = f
Let s : D — D, z — s(z) = 2% be the squaring map. Then define ® such that

f:goglosogplglog:@og
—_——
=P

Note that @ is not injective. Now ® € (D, D) by composition and since gogl(()) =0
®(0) = (a0 s045") (0) =, (57)
. _ 2
But recall that f(z) = 3, it follows that 32 = (f (20)> = (pa o f)(20). Hence

®(0) = (@;1 © Pa © f) (20) = f (20) =0
Hence, we can apply Schwarz Lemma 3.4 (iii) to get |®'(0)| < 1 (note that |®'(0)| # 1,
since if it were so, then ®(z) = e?2 for some § € R and it would mean that ® is

injective, but ® cannot be such, since the squaring function is not injective). Using the
chain rule applied to f = ® o g we have

f (20) = (I)’(g (Zo)) g (20) = <I>’(0) g (20)
’f’ (20) | = |<I>/<9 (Zo))’ : |9/ (20) | - ‘(I),((m : }9/ (20) | < ’9’ (20) ‘

Hence | " (z0) | < |¢ (20) |, which is a contradiction. O

This concludes the proof. O
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Proof of Proposition [3.10| in Step 3
1. Existence of the maximum: We want to prove the existence of f € F, such

that |f'(z0) | = s =sup{¢ (%) : g € F}

Recall: For any bounded subset v C R there is a non-decreasing sequence
(@n)nen- € UY such that lim,, o a, = sup(U)

nene € (F)N with
| /1 (20) | 7% 5. We want to show that this sequence has a limit f in F

Recalling the definition of supremum, we take a sequence (f;,)

Note that the proof will not be constructive and will only guarantee the existence
of a limit f € F

2. Recall: We have seen that a sequence of holomorphic functions that converge
uniformly on compact sets has a holomorphic limit (Theorem , but we can-
not expect that an arbitrary sequence (f,),en< to be uniformly convergent on
compact sets. May it be that a subsequence has this property?

Recall: In the finite dimensional vector space R™ with n € N, every bounded
sequence has a convergent subsequence.

So we are looking for an analogue of this for F. This is provided in the following
by Montel’s Theorem.

Theorem 3.24 (Montel’s Theorem). [SS10, Theorem VIII.3.3] Let 2 C C
open and (f,)nen+ € (%(Q))N . Suppose that

VK C Q compact IMy > 0Vn € N*Vz € K : | fu(2)| < Mk

Then 3(fn, )ren € (%(Q))N*, a subsequence of (f,)nen+, which converges
uniformly on compact subsets of (2.

3. In application to Riemann’s Theorem we have a sequence (f,)pens € F
so that Vz € QVn € N* : | f,(2)] <1 (not only compact sets, as I is bounded).

Hence we can apply Montel’s Theorem to find a sequence (f,, )rene € F
which converges uniformly on compact sets and this will give the limy_,o fr, = f
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(holomorphic) that we are looking for, provided that we can show that f € F

We now need to argue for the injectivity of such f, to this purpose we use the
following result:

Proposition 3.12. Let (f,,)nen- € F' be a sequence in F and suppose that
fn — f uniformly on any compact set K C 2. Then, either f is constant or
f € F. Moreover, for any z €

lim f;, (2) = f'(2)

n—o0

Proof. Clearly, if f, — f uniformly on compact sets, then f € J#(Q) and
lim,, o0 f} (2) = f (2) for z € Q, by Theorem [2.15]

We need to show that f(€2) C D and that f is injective or constant.

Since for z € Q we have |f,(z)| < 1, we deduce that |f(z)| < 1;if |f(z)| = 1
for some z € Q, then z would be a local maximum of |f|, which is impossible
by the Maximum Modulus Principle [3.13], unless f is constant. Otherwise indeed

f(Q)CD

What is left to show is that f is injective or constant. For this we have

Lemma 3.6. [SS10, Lemma VIIL.3.5] Let Q C C open and connected. (f,)nen+ €

(]D)Q)N* conformal. If f,, — f € C% uniformly on compact sets, then f is either
injective or constant.

Proof. We will suppose that f is not injective and show that then f is constant.
Suppose that for z; # 20 € Q1 f(21) = f(22). If f is not constant, since the
zeroes of holomorphic functions are isolated, we can find a disc Ds (2z2) C €, so
that f(z) — f (22) # 0 in Dj (2,). Hence, in particular

V€ Cy () f(2) — f(22) 0
Note that this also says that z, ¢ Cs (z2), since we assumed that f (z1) = f (22)

We apply the Argument Principle to the function f(z) — f (21) which has a
zero, namely zo, in Ds (z2) to get

1 f'(2)

— LB g
271 Jogion 70 = 1) 7
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We have f,, — f uniformly on compact sets, hence also on Cg (22), in particular
fn(2) # fu(z) for all n € N* and z € Cs (z2), since the f,, s are injective and
2 ¢ Cs (22). Hence

fn(2) nooo f'(2)
fa(2) = fa (21) f(z) = [ (1)
uniformly on Cs (z2). Therefore we get

1 () I fal2)
2mi /cg(zz) flz) = f (21)dz S 2mi Oy (z2) fn(2) = fu (21)dz

J/

~
=0, for all neN*

since the integrals on the right counts the zeroes of the holomorphic function
fa(2) = fu(z1) in C’g (z2), so none by the injectivity of f,,, but the integer on the
left is > 1, which is a contradiction. Hence, f must be a constant. O]

]

Remark 3.31. Finally note that in the case (fn)nen- € F with lim,, o ’fvfl (20) ‘ =5
and lim,,_ | f1 (20) | = |f (20) | we have that

1. Vn € N*: fl (20) # 0, using Proposition [3.§ and that f, ’s are conformal (hence
VzeQ: fl(z) #0).

2. By the definition of supremum,there exists a non-decreasing sequence
0<|fi(z0)] <. <|fin(20)] < -

such that lim, o | f2 (20) | = s > 0. Hence f'(z0) # 0 and [ is not constant.

Proof of Montel’s Theorem [3.24]

Montel’s Theorem [3.24] actually consists of 2 parts:

1. The first part is about the complex behaviour of sequences of holomorphic func-
tions, which says

(a) A sequence of holomorphic functions which is uniformly bounded on compact
sets K C (), i.e.

VK C Q compact My, > 0Vz € KVn € N* : | f,(2)] < M

is equicontinuous on compact sets.
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(b) A sequence (f,)nens € (CQ)N* is equicontinuous on a compact set K C
Q, if

Ve > 036 > 0Vz,w € K : |z —w| < d = Vn e N*: | f(z) — fu(w)| <e

This is a complex behaviour in the sense that it is not true for sequences of real
functions. For example, f,(z) = sin(nz) on (0, 1) is uniformly bounded on com-
pact sets, but not equicontinuous.

Equicontinuity is a very strong condition and requires uniform continuity uni-
formly in the family.

The family (f,)nen- € R%Y on [0,1], given by f,(z) = 2™, is not equicontinuous,
even though each

fn:[0,1] = R

T —x"

is uniformly continuous on [0, 1]. The family (f,)nen+ is not equicontinuous. For
example take any w € (0,1), then | f,(1) — fu(w)] %1

2. The second part is known as Arzela-Ascoli Theorem [EW22], which says that any
family F of functions, which is uniformly bounded and equicontinuous on com-
pact subsets of €2, has a subsequence which converges uniformly on every compact
subset of © (the limit need not be in F).

This part belongs to Topology/Functional Analysis, hence will be assumed with-
out proof.

Theorem 3.25 (Arzela-Ascoli). [EW22] Let K C R™ be compact and (f,)nen €
(COK; Rm))N a sequence of continuous functions on K. Suppose that

1. 3z € KIM > 0Vn € N* : | f, (m0) | < M (ie. (|fn(m0)‘)neN* is bounded in
R™).

2. (fu)nen+ is equicontinuous.

Then 3(fn, )ken € (CO(K ;Rm))N*, which converges uniformly on K to some con-
tinuous function f € CO(K;R™)

Assuming the Arzela-Ascoli Theorem |3.25| the proof of Montel’s Theorem |3.24] reduces
to proving that every sequence of holomorphic functions, which is uniformly bounded
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on compact sets, is equicontinuous on compact sets.
This uses Cauchy’s Integral Formula [2.6] together with the following Lemma:

Lemma 3.7. [SS10, Lemma VIIL.3.4] Let Q C C be open. Then 3 compact sets
{K;}ien+ such that

1. VieN: K, C int(Kl+1)

2. Any compact set K C Q is contained in K for some [ € N*. In particular
0=|JK
=1

(Such a sequence {K.}2; of compact subsets of ) is called an exhaustion)

Proof. Exercise. [

Now, assuming the Arzela-Ascoli Theorem [3.25| and Lemma [3.7] we can give the proof
of Montel’s Theorem [3.24]

Proof of Theorem [3.24. Let (fn)nen be a sequence of holomorphic functions, which are
uniformly bounded on compact sets. We want to show that (f,,)nen+ is equicontinuous.

1. Let K C Q be compact, let 7 > 0 such that Ds,.(z) C Q for z € K (we can
choose r so that 3r is less than the distance from K to the boundary of €2, i.e.
3r < d(K,00)).

Let z,w € K with |z — w| < r. The Cauchy Integral Formula gives

2 = 1) = 5 [ 140 (25~ =)

where im(v) = Ca.(w). On Cy.(w) we have

‘ 11 ‘_ |z — wl |z — wl
§—z S—w| [f-wlf¢—z7 2r-r

since | — z| > | —w| — |w—z| > 2r —r =r and |£ — w| = 2r. Hence using the
standard estimate for the integral

|2 = wl

| fn(2) = fu(w)] < g;QW(Zer——udéégkﬂ,g M
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since V¢ € Cy.(w)Vn € N* : |fn(§)| < M, where M in the uniform bound for all
fn € F in Dos(w)
So, for any € > 0 we get

Vn e NVz,w e K : |fn(z) — fn(w)‘ <e
as soon as

. er
|z — w| < min {r, M}

2. To extract a subsequence which converges uniformly on all compact sets we use
a standard trick, called the “diagonal argument”.

Let {K;}ien+ be the sequence of compact sets given by the last Lemma .
By the first step and the Arzela-Ascoli Theorem [3.25] there is a subsequence of
(fn)nen= converging uniformly on K, say

(fn)n6L1

Then there exists a subsequence of (f,)ner,, with Ly C N infinite, converging
uniformly on Kj, hence on Ky and Ky, say (fn),cr, L2 C L1 C N infinite. Induc-
tively, we get a subsequence (f,,)ner, converging uniformly on Ky, Ko, ..., K with
L,cL,,C..CcLiCN

Now let

ny:=min{n e N*:ne L}
ne:=min{n e N*:n € Ly\ {m}} € Ly C L4
ng .= min{nEN*:nE Lg\{nl,ng}} S Lg CL2 CLl

We get ny < ng < ...withng € Ly C L1 C ... C L4
Note that L := {nq,ns, ...} has the property that L\ Ly is finite for each k

For each k € N*, (fu)ner = (fn,)jen is up to finitely many terms (which has no

effect on convergence) a subsequence of (f.), ;.

Hence (fn,)jen converges uniformly on every Kj, since any compact set K is
contained in K} for some k € N*

]
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Appendix A

The analytic continuation of the
Riemann Zeta Function

So far we have seen the following results:

1. We have seen

Proposition A.1. [SS10, Proposition VI.2.1] The series ((s) = >, = con-
verges absolutely and uniformly on every half plane

V6 >0:Us :={seC:Re(s)>1+4}

and is holomorphic in {s € C: Re(S) > 1}

2. We have also seen

Proposition A.2.Vz € H : (z) := Y°° ™% converges and defines a
holomorphic function in HH = {z € C: Im(z) > 0}

We have seen that

3. For a function f € C®, which is Riemann integrable on every [a,b] and for which
ffooo ‘ f (t)!dt converges, its Fourier transform is defined as

fr= [ swerei

We also have shown that f(z) = e~™ has f(£) = e ™. What we have not seen, but
can be proved, are the following results about Fourier Transform, which can be found

179
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in Chapter IV in [SS10].

For a > 0, denote by F, the class of all functions f that satisfy the following two
conditions:

1. f is holomorphic in the horizontal strip S, := {z eC: }Im(z)’ < a}

2. It exists a constant A > 0 such that

Vo € RVy € (—a,a) : |f(z +iy)| < e

i.e. f is of moderate decay on each horizontal line I'm(z) = y uniformly in y €
(_a7a)

Example A.1. f(z) =e¢ ™ € F, for alla> 0. Let F := {feCt:3a>0:feckF}

The Fourier Inversion says

Theorem A.1 (Fourier Inversion). [SS10, Proposition VI.2.2] If f € F, then

VxeR;mw:/ff@wM“%

The Poisson Summation says

Theorem A.2 (Poisson Summation Formula). [SS10, Proposition VI.2.4] If f € F,

then )
S fm) =3 fw)

neEL neZ

Corollary A.1. The Poisson Summation Formula applied to f;(z) = e"‘mQ, for

t € R>? gives
o0 oo
5 et § e

n=—oo n=—0oo

2 =1 —nn? 1 ]_
R —mtn® _ 1 = -
VW(t) = g e =t e ——ﬁﬁ(t>

neZ neL

n2

Hence
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So

and note that ¥(t) = 6(it)

We can now use this transformation of the #-function to give analytic continuation and
functional equation of {(s), namely

Theorem A.3. [SS10, Theorem VI1.2.3] Let for Re(s) > 1 and

S

A(s) :=7~%/°T (2> q(s)

Then A(s) has a meromorphic continuation to all of s-plane, with simple poles at
s = 0,1 and satisfies the functional equation

A(l —s) = A(s)

Recall: For Re(s) > 0 we have
o dt
[(s) ::/ e ' —
0 t

Theorem A.4. I" has analytic continuation to a meromorphic function on C, with

simple poles at s =0, —1, —2, ... and residue at s = —n equal to
(="
Res_,(I") = —

Proof of Theorem[A.3. Idea: to relate A(s) and ¥(t) = 6(it) via an integral transform
and use the transformation property of ¥(t) = \%19 (%) inside the integral to analytically

continue A(s). O

We start by collecting growth and decay property of ¥(t), for example

1 t—0

It) < Ctz —=0

(follows from the functional equation) and |v(t) — 1| < Ce™™" for some C' > 0 and for
all t > 1. Since for t > 1, we get

92 Z 6—71’712t <2 Z et < Ce~ ™

neN* neN*
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The relation between A and 1 is now given by the fact that for any s € C with Re(s) > 1
we have

s s dt

A(s)=72T <2> ((s) = /000 (19(25) — 1)7557

This is based on the simple observations that

—s

L[ e"”ﬂtt%% = (mn?)2 I'(s) =72 [(s)n~*
2. 9(t) =1 =230 e ™

Using the estimates on 9(t) as t — 0 and as ¢ — oo, one can justify the change of [
and > to get for Re(s) > 1

1 [ sdt o~ [ s dt = =1
5/0 (ﬁ(z)—1)t7_;/o i =) Y = A

n=1

Ads) = %/OOO (9(t) - 1)t3%

Now, we will see that we can make sense of the right hand side for s € C. Now

VE>1:[9(t) -1 <e ™
1 [ 52t
—=Vs e C: 3 (I(t) — 1)t ~ converges
1
Hence, it defines an analytic function for all s € C. On the other hand, for § fol (V(t) —

1)t24 we use the functional equation J(t) = tz 9 (1). This gives 9(t) — 1 = ), (1) -
1=tz (0 (3) —1) +¢2 — 1. Hence

1 [t sdt 1 Y/ 1 - s dt
- —1)tz2— = = 2 — 1 =1 2 —1)t2— =
[ -t (1 (o(3) ) o)
1
a t

Now we make the change of variables u = % with %“ = —% we get

L () [moes
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Hence, overall we have

Mo =3 [T -0F =3 (254 [ 0= (Beer) )

Note that the integral on the right defines an entire function for all s € C due to the
exponential decay of

VE>1:|9(t) — 1] < Ce™™

Hence A(s) has a continuation to all of the s-plane, which is holomorphic except for
the simple poles at s = 1,0 with resides 1 and —1 respectively.

Both -4 — % and [ (9(t) — 1) <t% + t%) % are invariant under s — 1 — s, hence
A(s) =A(1—s)

A(s) =72 T (%) ((s) has analytic continuation to all s € C except for the simple poles
at s=0and s =1

Since I' (g) has poles at § =0, —1,—2,...; ((s) does not have a pole at s = 0 and must
vanish at s = —2, —4, —6, ...; since A(s) does not have poles at s = —2, —4, ...

These are called the trivial zeroes of ((s)

For Re(s) > 1, we have that ((s) = Y2, -& also has an infinite product expansion,
called Euler product

p primes D¢

which is an analytic statement of the Fundamental Theorem of Arithmetic: every
positive integer is a unique product of prime powers.

Due to the Euler product, we have that ((s) # 0 for Re(s) > 1 and by the functional
equation, that ((s) # 0 for Re(s) <0

Definition A.1 (Riemann Hypothesis). If s # —2,—4, ..., s € C with ((s) = 0, then

Re(s) = 5

Theorem A.5 (Prime Number Theorem (PNT)). Let

7(z) ;= #{p prime :p <z}
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Then
m(z)
1ogx(x)

lim =1

T—00

The Prime Number Theorem is a consequence of

H Theorem A.6. If Re(s) =1, then ((s) # 0 ‘l




Appendix B

Other results

B.1 Substitution rule in complex line integration

A straightforward fact that is quite different from the case of real analysis is that,
once the reader shall have gained some experience in the practice of the calculation of
complex line integrals, it will be evident that the integration by substitution does not
work as easily as in the real case.

Example B.1. Consider the integral

/ e?dz =e* — 1
£10,2]

on another hand one tries to approach it by naively setting w = iz and consequently
dw — i the result would turn out to be

dz
/ eidw = z/ e’dw = i(e* — 1)
¢ £[0,24]

[0,24]
which leads to a different incorrect result.

Part of the reason for this limit to integration is linkable to the Homotopy Theorem
3.14] as a change of variable, once composed with the path, deforms it in possibly
non-viable ways. For instance, exiting the domain of the integrand function, crossing
a singularity, etc. To name one more, also changes in the “simplicity” of the curve can
have effects.

Theorem B.1. Let Q C C be an open subset and let v € C’l([a, b); Q) be a path
in Q. If ¢ : Q — ¢(Q2) is biholomorphic, i.e. is a bijection that is holomorphic and

185
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with holomorphic inverse, then

[rGz= [ o) @

A useful result to accompany this Theorem is the following Lemma, which states the

form that biholomorphisms need to assume from C to C, namely Affine maps, denoted
by Aut »(C)

Lemma B.1. All biholomorphisms from C to C are affine maps, namely

Vf € Aut#(C)Ia,be CV2z € C: f(z) =az+b

Proof. We want to show this in two steps, first showing that such a function is a
polynomial and second that its degree is 1
Let f € Aut,»(C). First, the series expansion of f at 0 is

[e.9]

f) =Y e

n=0

and converges over all of C, since f is entire. Composing f with the inversion n : C* —
C,z— % it results that for

gi=fon:C"—=C,z— Zangé
n=0
we have that g(C*) = f(C*) = C\ {f(0)}. Now, if 0 were an essential singularity

of g, then g(Dl(O)) = f(C\ D1(0)) = C and since f is non-constant we have that
f(C\ D;(0)) is open in C and so

F(C\D1(0)) N f(Dr(0)) # 0

Hence, a contradiction to the bijectivity of f. So, 0 is either a pole of order N € N* or
removable. In the latter case, g(z) = ag = f(2) for all z € C, otherwise

N
f(z) = Z ap?’
n=0

for N as above. To prove that N = 1, assume that N > 2, thus f(z) — ag either
has multiple zeroes (infraction to the injectivity, as the preimage of 0 has more than
one element) of one with higher multiplicity. In this case, we again conclude that the
injectivity of f produces a contradiction. Therefore N = 1 and the first direction is
shown.

Conversely, every affine function is bijective and biholomorphic on C [
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There are many more (conformal) automorphism between two proper subset of C with
specific characteristics, these can be obtained using the Riemann mapping Theorem

B3.211

B.2 L’Hopital’s Rule in C

Theorem B.2 (L’Hopital’s Rule in C). Let a € C and f, g € 5(U,) with U, € O¢
and a € U,, such that f(a) = g(a) = 0, then

lim f(z) = lim M
z—a g(z) z—a g’(z)

Proof. Let f € #(U,) and f'(a) = lim,_,, @@ — Jim,,, 22 since f(a) = 0.

z—a z—a’

Hence, f’ is continuous and therefore lim,_,, f'(z) = f’(a), from which follows that
f(z)

w10 iy £ e (3 SO (0 oy O
M) " Mi—a g \hi—d) UBm ) T

B.3 Properties of the Residue

Proposition B.1. Let D,(z) € O¢ for some r > 0 and f, g € %(Dr(zg)) with
2o € C being a pole of both, then

(1) Resy(f +g) = Res;(f) + Res,,(9)

(ii) Res,,(fg) has a finitary expression.
(iif) If the extension f € (D, (2)), then Res., () =0

: N*
(iv) If a sequence (fy)nen € <%(Dr(zo))> is such that f, = f, then

n—r00

Res,, (i fn> = i Res,, (fn)
n=0 n=0

Proof. (i) Assume that f and g are analytic in a punctured neighbourhood of 2.
Then by definition of the residue one has

Res,, (f +9) = L/ (f(2) +9(2)) dz

211
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where « is a sufficiently small circle with center zy. By linearity of integrals, it
follows that

RGSZO(f + g) = RQSZO(f) + Reszo (g)

(ii) There is no “nice” formula for Res,,(fg). However, when f and ¢ just have poles
at 2o it is possible to compute Res,,(fg) in a "finitary” fashion from the Laurent
expansions of f and g as follows: assuming 2y, = 0 for simplicity we have

f)=Y a
k=—m

g(z) = Z bez!
{=—n

f(2)g(z) = ( i akzk) (Z ng£> + h(z)

where h is holomorphic at 0. The residue of fg at 0 can now be extracted:

n—1

Reso(fg) = Z arb_p_1

k=—m

(iii) We have that for z in a punctured neighbourhood of z

for some holomorphic h in the same neighbourhood. Then

Py = MG _he) _ G = he)

z z

(iv) Let € > 0, when the series >~ f, converges uniformly in annuli A(zo, ¢, 2¢),
then one has

Res., (nzzo fn) = %/y (nZ:O fn) dz = nzzo%/yfn@') dz = nZ:OReSZO(fn)

for any curve v with im(y) C A(zo, ¢, 2¢)
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B.4 A winding number algorithm

To check if a given point lies inside or outside a polygon:
1. Draw a horizontal line to the right of each point and extend it to infinity.
2. Count the number of times the line intersects with polygon edges.

3. A point is inside the polygon if either count of intersections is odd or point lies on
an edge of the polygon. If none of the conditions are true, then point lies outside.

H\\,,/"':

wn = F

+7
1

wn =1
LN\ wi-o
'-"-'|'|=—:|_

Furthermore, this algorithm can be generalized to an arbitrary direction of the ray,
preserving the sign of every crossing direction, hence left to right or right to left (in
the direction of the ray pointing to infinity). An improved version of this is already far
beyond the scope of this section and is known as “Dan Sunday’s RAY Algorithm”.
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