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Chapter 0

Introduction

Lecture 1

Our goal this semester is to study functions f : C→ C defined on the complex plane

C, or on an open subset of C.
We will see that the study of complex function theory is not simply the study of

functions on R2. We will see that in many ways the theory of one real variable is

more complicated than the theory of functions of complex variable. To give an idea

of what we mean, let us try to compare and contrast:

1. It is not too difficult to write down a function of a real variable that is n times

differentiable but not infinitely differentiable, for example

f(x) :=

x2 sin
(
1/x2

)
if x ̸= 0

0 if x = 0.

The derivative of f exists for every x including x = 0, but the derivative is not

continuous. By integrating f as many times as you like, you get a function

that is n times differentiable, but not infinitely many times differentiable.

In contrast we will see that if f : C→ C is differentiable once, it is differentiable

infinitely many times.

2. There are functions f : R → R that are infinitely many times differentiable,

but whose Taylor seres does not represent f i.e. f is not analytic. For example

consider

f(x) :=

exp
(
− 1

x2

)
if x ̸= 0

0 if x = 0.

Then f is infinitely many times differentiable. Unfortunately at x = 0 all
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0 Introduction

derivatives are zero. Hence its Taylor series is identically zero and cannot

represent f .

In contrast, if f : C → C is a function of complex variable which is differen-

tiable, then f is analytic, i.e. it can be represented by a power series (in C
differentiable = analytic).

3. There are plenty of C∞ functions of a real variable that are bounded, for

example sinx, cosx.

In contrast we will see that if a function f : C → C is differentiable and

bounded then it is constant (Liouville’s Theorem 2.4.6).

4. For two functions of a real variable f, g f and g can agree on an open set

without being equal.

In contrast, if f, g : C→ C are two differentiable functions which coincide on

an arbitrary small disc (or even on a convergent sequence (zn)), then f = g

(Analytic continuation principle 2.4.16).

Remark. The power of complex function theory comes from this ”robustness” or

rigidity. It is a subject where in some sense analysis, geometry and algebra come

together. This, we will see, allows one to prove theorems that a priori have nothing

to do with complex numbers.

1. With complex analysis one can show the Fresnel integrals (example 2.3.2)

∫ ∞

0
cos
(
t2
)
dt =

∫ ∞

0
sin
(
t2
)
dt =

√
2π

4
.

2. Let π(x) := #{p prime|p ≤ x}. Then with complex analysis one can show

π(x) ∼
x→∞

x

log x
(Prime Number Theorem).

3. If f ∈ C[x] a non zero polynomial, then f has a zero in C (Fundamental

Theorem of Algebra 2.4.7 or exercise 3.4.5).
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Chapter 1

Preliminaries to Complex

Analysis

1.1 Complex numbers and complex plane

Definition 1.1.1: Complex Numbers

The complex numbers are defined by

C := {x+ iy|x, y ∈ R, i2 = −1}.

For z = x+ iy ∈ C we define the real part of z

Re(z) := x

and the imaginary part

Im(z) := y.

Definition 1.1.2: Complex Conjugate

The complex conjugate of a complex number z = x+ iy is defined by

z := x− iy.

One can also show that

Re(z) =
z + z

2
and Im(z) =

z − z

2i
.

3



1 Preliminaries to Complex Analysis

Also

z ∈ R⇔ z = z,

z ∈ iR⇔ z = −z.

Complex numbers can also be represented as ordered pairs of real numbers in R2

with z = (x, y) where we have z = w with w = (u, v) if and only if x = u and y = v.

Let z = x+ iy and w = u+ iv, then the addition of z + w in C is given by

z + w := (x+ u) + i(v + y)

and the multiplication

z · w := (xu− vy) + i(xv + yu).

Definition 1.1.3: Absolute Value of a complex number

The norm/absolute value of a complex number is given by

|z| :=
√
zz =

√
x2 + y2.

We can also represent the complex numbers in polar coordinates with x = r cos θ

and y = r sin θ. We write z = reiθ.

Re

Im

z = reiθ

r

θ

r cos θ

r sin θ

The polar representation is not unique unless we restrict θ ∈ (−π, π] or any other

interval of length 2π.
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1.1 Complex numbers and complex plane

Definition 1.1.4: Argument

The angle θ is called the argument of z. It is defined uniquely up to a multiple

of 2π and is denoted by arg z

arg z = {θ ∈ R | z = |z|eiθ}.

The argument chosen in the interval (π, π] is called the principal argument

and denoted by Arg z.

Remark. No assignment of argument is made to 0 ∈ C.
For z = x+ iy ̸= 0 we have

Argz =


arcsin(y/|z|) if x ≥ 0,

π − arcsin(y/|z|) if x < 0 and y ≥ 0

−π − arcsin(y/|z|) if x < 0 and y < 0.

Observe that arg(z−1) = − arg z and arg(zw) = arg z + argw. But it is not always

the case that Arg(z−1) = −Arg(z) or Arg(zw) = Arg(z) + Arg(w). For example

Arg(−1/2) = π ̸= −Arg(−2) = −π and π = Arg(−1) = Arg((−i)(−i)) ̸= Arg(−i)+
Arg(−i) = −π.
Also recall the following:

• |z| = 0 ⇐⇒ z = 0 ∀ z ∈ C

• ||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2| ∀ z1, z2 ∈ C

• |z1z2| = |z1||z2| ∀ z1, z2 ∈ C

• |z| = |z|

• |Re(z)| ≤ |z|, | Im(z)| ≤ z ∀ z ∈ C

We can also represent the complex numbers as 2× 2 matrices. For z = a+ ib, w =

c+ id let

Z =

(
a −b
b a

)
and W =

(
c −d
d c

)
then

ZW =

(
ac− bd −(bc+ ad)

bc+ ad ac− bd

)
.

On the other hand zw = ac−bd+i(bc+ad), hence the multiplication in C corresponds

to multiplication of corresponding matrices in M2(R). We can represent any z ∈ C
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1 Preliminaries to Complex Analysis

with the matrix (
Re z − Im z

Im z Re z

)
.

1.2 Topology and convergence

Definition 1.2.1: Open disk

The open disc of radius r centred at z0 is denoted by Dr(z0) = {z ∈ C :

|z−z0| < r}. The corresponding closed disc is Dr(z0) = {z ∈ C : |z−z0| ≤ r}.
The boundary of Dr(z0) is the circle Cr(z0) = {z ∈ C : |z − z0| = r}.

Definition 1.2.2: Connected and disconnected

A subset A ⊆ C is called disconnected if there exist open sets U, V ⊆ C
such that U ∩ V = ∅, both U and V have non-empty intersections with A,

and A ⊆ U ∪ V . A subset of C is connected if it is not disconnected, and is

called a region or a domain.

Remark. Any two points z1, z2 ∈ A where A ⊆ C is open and connected can be

joined by a polygonal path, hence A is automatically path-connected.

For a more in depth recap consider the Analysis I and Analysis II scripts of Prof.

Alessio Figalli (Analysis I) [2] and Prof. Joaquim Serra (Analysis II) [3].

1.3 Holomorphic functions

Definition 1.3.1: Holomorphic Function

Let Ω ⊆ C be an open set, f : Ω→ C. f is called holomorphic (or complex

differentiable) at z0 ∈ Ω if the limit

lim
z→z0
z ̸=z0

f(z)− f(z0)

z − z0
= lim

h→0
h̸=0

f(z0 + h)− f(z0)

h

exists, where h ∈ C is chosen such that z0 + h ∈ Ω. We call the limit the

derivative of f at z0 and denote it by f ′(z0). f is called holomorphic on

Ω if it is complex differentiable at every z0 ∈ Ω. f is called entire if it is

differentiable on C.
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1.3 Holomorphic functions

Example 1.3.2

Let f : C→ C, z 7→ z. Then

lim
h→0

f(z0 + h)− f(z0)

h
= lim

h→0

z0 + h− z0
h

= 1.

Proposition 1.3.3: Basic properties

Let H(Ω) = {f : Ω → C | f is holomorphic on Ω}, then H(Ω) is a C-vector
space. Moreover, if f, g ∈ H(Ω), the following holds:

1. αf + βg is holomorphic on Ω for any α, β ∈ C, and (αf + βg)′ =

αf ′ + βg′.

2. fg ∈ H(Ω) and (fg)′ = f ′g + fg′.

3. If g(z0) ̸= 0, then f/g is holomorphic at z0 and

(f/g)′ =
f ′g − g′f

g2
.

Further, if f : Ω→ U and g : U → C are holomorphic, the chain rule holds

(g ◦ f)′(z) = g′(f(z))f ′(z) for all z ∈ Ω.

Lecture 2

Remark. If f : Ω → C is differentiable at z0 ∈ C, then there exists a complex

number c ∈ C such that

f(z) = f(z0) + c(z − z0) + E(z, z0)

with E : Ω→ C satisfying

lim
z→z0

∣∣∣∣E(z, z0)

z − z0

∣∣∣∣ = 0.

Here c = f ′(z0).

Example 1.3.4

f(z) = z if differentiable anywhere. This together with the previous proposition

gives us that every polynomial p(z) = anz
n + an−1z

n−1 + · · · + a0 is differentiable

for all z ∈ C, and for example, (zn)′ = nzn−1.

Here is an important non-example.

7



1 Preliminaries to Complex Analysis

Example 1.3.5

f(z) = z, let z0 ∈ C. Then we have

f(z0 + h)− f(z0)

h
=

z0 + h− z0
h

=
h

h
.

If we choose h = t, t ∈ R with t → 0, then this limit is 1. If we choose h = it,

then the quotient evaluates to −1, hence the limit does not exist as h→ 0. Hence

f(z) = z is not complex differentiable.

If we view f as a function of 2 real variables f̃ : R2 → R2, (x, y) 7→ (x,−y), or

f̃(x, y) =

(
1 0

0 −1

)(
x

y

)

f̃ is linear and hence differentiable anywhere in R2, with Jacobian(
1 0

0 −1

)
.

Recall: F : R2 → R2 is differentiable at p0 = (x0, y0) if there exists a linear map

J : R2 → R2 such that

lim
p→p0

∥F (p)− F (p0)− J(p− p0)∥
∥p− p0∥

= 0.

Recall from Linear Algebra we can view C as a 1-dimensional vector space over C,
with basis {1} or as a 2-dimensional real vector space, with basis {1, i}. A map

T : C→ C is a C linear if T (z) = λz for some λ ∈ C. On the other hand T : C→ C
is R linear if T (z) = T (x+ iy) = xT (1) + yT (i) = λz + µz, where

λ =
1

2
(T (1)− iT (i)), µ =

1

2
(T (1) + iT (i))

which can be seen using

x =
z + z

2
, y =

z − z

2i
.

Hence any C-linear map is also R-linear (with µ = 0), but not every R-linear map

is C-linear. It is C-linear if and only if µ = 0, which is equivalent to T (i) = iT (1).

If T (1) = a + bi and T (i) = c + di, then T (i) = iT (1) if and only if b = −c, a = d.

8



1.4 Cauchy-Riemann equations

If we identify C with R2, a R-linear map is also C-linear if its matrix(
a b

c d

)
=

(
a −c
c a

)
.

Note the matrix corresponding to (x, y) 7→ (x,−y) was(
1 0

0 −1

)

and does not have the desired form.

How does this Linear Algebra fact reflect on the complex and real differentiability

of a function f : C→ C?

1.4 Cauchy-Riemann equations

Let f : C → C holomorphic at z0, f(x + iy) = u + iv. We can also view f as a

function on R2 defined by f̃ : R2 → R2, (x, y) 7→ (u(x, y), v(x, y)). Then the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. First approach z0 along z = x+ iy0, x→ x0:

f ′(z0) = lim
x→x0

f(x+ iy0)− f(x0 + iy0)

x− x0

= lim
x→x0

u(x, y0)− u(x0, y0)

x− x0
+ i lim

x→x0

v(x, y0)− v(x0, y0)

x− x0

= ux(x0, y0) + ivx(x0, y0). (1.1)

In the similar manner we can approach z0 with z = x0 + iy, y → y0, then there is

f ′(z0) = vy(z0)− iuy(z0) (1.2)

The two equations (1.1) and (1.2) must be equal, hence the Cauchy-Riemann

equations hold

ux = vy and uy = −vx. (1.3)

9



1 Preliminaries to Complex Analysis

In terms of the real function f̃ , we have

Jf̃ =

(
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

)

where one can also see that the Cauchy-Riemann equations must be satisfied for the

matrix to represent a C-linear map. We also define the differential operator Lecture 3

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Proposition 1.4.1: ∂z and ∂z

If f is holomorphic at z0 and f(x) = u+ iv. Then,

∂f

∂z
(z0) = 0 and f ′(z0) =

∂f

∂z
(z0) = 2

∂u

∂z
(z0).

If we write

f̃ : R2 −→ R2

(x, y) 7−→ (u(x, y), v(x, y))

so that f(z) = f̃(x, y), then f̃ is real differentiable with Jacobian

Jf̃ =

(
ux uy

vx vy

)
=

(
ux uy

−uy ux

)
=

(
ux −vx
vx ux

)
,

and det Jf̃ = |f ′(z0)|2 = u2x + u2y = u2x + v2x.

Proof.

∂f

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=
1

2
(ux + ivx + iuy − vy)

=
1

2

(
(uy − vx) + i(vx + uy)

)
= 0,
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1.4 Cauchy-Riemann equations

where we applied Cauchy-Riemann equations (1.3). Adding (1.1) and (1.2) and

dividing by 2 we get

f ′(z0) =
1

2

(
ux(z0) + ivx(z0) + vy(z0)− iuy(z0)

)
=

1

2

(
(ux(z0) + ivx(z0))− i (uy(z0) + ivy(z0)

)
=

1

2

(
∂

∂x
f(z0)− i

∂

∂y
f(z0)

)
=

∂

∂z
f(z0).

Also we can see that

f ′(z0) = ux + ivx = ux − iuy = 2
∂u

∂z
.

Now we show the last part of the proposition. If z0 = x0 − iy0 and h = h1 + h2i.

Since f is holomorphic at z0, it means

f(z0 + h)− f(z0) = f ′(z0)h+ ε(h)h

with limh→0 ε(h)→ 0. If f ′(z0) = a+ ib,

f ′(z0)h = (a+ ib)(h1 + h2i) = ah1 − bh2 + i(bh1 + ah2)

=

(
a −b
b a

)(
h1

h2

)
.

If we write f̃(x, y) : R2 → R2, then∣∣∣∣∣f̃((x0, y0) + (h1, h2))− f̃(x0, y0)−

(
a −b
b a

)(
h1

h2

)∣∣∣∣∣
|(h1, h2)|

→ 0

as |h| → 0, which means f̃ is differentiable with a C-linear differential. A quick

computation shows that the Jacobian determinant takes the given value.

Remark. Recall

1. C can ba identified with 2× 2 real matrices of the form(
a −b
b a

)
.

11



1 Preliminaries to Complex Analysis

2. f̃ : R2 → R2, (x, y) 7→ (u(x, y), v(x, y)),

Jf̃ =

(
ux uy

vx vy

)
.

Now if f ′(z0) = a+ bi, then the Jacobian of the corresponding f̃ should be in

the form (
a −b
b a

)
.

Hence we can see the Cauchy-Riemann equations.

We have seen that f being differentiable at z0 implies that f satisfies the Cauchy-

Riemann equations. There is a partial converse.

Theorem 1.4.2: Cauchy-Riemann equations and differentiability

Suppose Ω ⊂ C is an open subset and f : Ω→ C with f = u+ iv. If u, v are

continuously differentiable and f satisfies the Cauchy-Riemann equations in

Ω, then f if differentiable on Ω and f ′(z0) =
∂
∂zf(z0).

Proof. Let z0 = (x0, y0) ∈ Ω and h = (h1, h2). Since u and v are differentiable, we

have

u(z0 + h)− u(z0) = ux(z0)h1 + uy(z0)h2 + |h|ε1(h),

where ε1(h)→ 0 as h→ 0, and

v(z0 + h)− v(z0) = vx(z0)h1 + vy(z0)h2 + |h|ε2(h),

where ε2(h)→ 0 as h→ 0. Hence we have

f(z0 + h)− f(z0) = (u+ iv)(z0 + h)− (u+ iv)(z0)

= (∂xu− i∂yu)h1 + (∂yu+ i∂xu)h2 + |h|ε(h) (1.4)

= (∂xu− i∂yu)(h1 + h2i) + |h|ε(h),

where ε(h) = ε1(h) + iε2(h) and we used the Cauchy-Riemann equations (1.3) in

12



1.5 Power series

(1.4). This implies

=

∣∣∣∣f(z0 + h)− f(z0)

h
− (∂xu(z0)− i∂yu(z0))

∣∣∣∣
=

∣∣∣∣f(z0 + h)− f(z0)− (∂xu(z0)− i∂yu(z0))(h1 + h2i)

h

∣∣∣∣
=
|h||ε(h)|
|h|

= |ε(h)|.

Since limh→0 |ε(h)| = limh→0

√
ε1(h)2 + ε2(h)2 = 0, using the definition of the limit

we conclude that

lim
h→0

f(z0 + h)− f(z0)

h
= ∂xu(z0)− i∂yu(z0).

In particular the limit of the differential quotient exists and f is differentiable. Using

Proposition 1.4.1 we finally get

f ′(z0) = ∂xu(z0)− i∂yu(z0) = 2
∂u

∂z
(z0) =

∂f

∂z
(z0).

Example 1.4.3

f(z) + x2 + y2 + i2xy, then

∂xu = 2x ∂2v = 2y

∂yu = 2y ∂yv = 2x

Hence f is only differentiable at y = 0, that is, for any z = x.

1.5 Power series

Recall that a power series is a series of the form

∞∑
n=0

anz
n z ∈ C.

13



1 Preliminaries to Complex Analysis

Theorem 1.5.1: Power series and Radius of Convergence

Let
∞∑
n=0

anz
n

be a power series. Then there exists R ∈ R with 0 ≤ R ≤ ∞ such that

1. if |z| < R, then the series converges absolutely,

2. if |z| > R, then it diverges.

Moreover, with the convention that 1/0 =∞ and 1/∞ = 0, R is given by

1

R
= lim sup

n→∞
|an|1/n.

R is called the radius of convergence and DR(0) = {z ∈ C : |z| < R} is

called the disc of convergence.

Example 1.5.2

The exponential function is given by

ez =
∞∑
n=0

zn

n!
.

One can check that
∞∑
n=0

|z|n

n!
= e|z| <∞,

so the power series converges for all z ∈ C.

Theorem 1.5.3: Radius of convergence of the derivative

The power series f(z) =
∑∞

n=0 anz
n defines a holomorphic function in its

disc of convergence and moreover,

f ′(z) =

∞∑
n=0

nanz
n−1

and f ′ has the same radius of convergence as f .

Proof. Let R be the radius on convergence of f . Since limn
1
n = 1, lim sup |ann|1/n =

lim sup |an|1/n = R, hence
∑∞

n=0 nanz
n−1 has the same radius of convergence. Now

let z ∈ C with |z| < R. Choose δ > 0 such that |z| + δ < R (for instance take

14



1.5 Power series

δ = (R− |z|)/2). Let h ∈ C, |h| < δ, we want to show∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=0

nanz
n−1

∣∣∣∣∣→ 0

as h→ 0. We have∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=0

nanz
n−1

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

an(z + h)n − anz
n

h
− nanz

n−1

∣∣∣∣∣
≤

∞∑
n=0

|an|

∣∣∣∣∣1h
(

n∑
k=0

(
n

k

)
hkzn−k − zn

)
− nzn−1

∣∣∣∣∣
=

∞∑
n=1

|an|

∣∣∣∣∣
n∑

k=1

(
n

k

)
hk−1zn−k − nzn−1

∣∣∣∣∣
=

∞∑
n=2

|an|

∣∣∣∣∣
n∑

k=2

(
n

k

)
hk−1zn−k

∣∣∣∣∣
≤

∞∑
n=2

|an|n(n− 1)

n∑
k=2

(
n− 2

k − 2

)
|h|k−2|z|n−k|h|,

(1.5)

where for (1.5) we used that for k ≥ 2,(
n

k

)
=

n

k

(
n− 1

k − 1

)
=

n(n− 1)

k(k − 1)

(
n− 2

k − 2

)
≤ n(n− 1)

(
n− 2

k − 2

)
.

It follows that∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=0

nanz
n−1

∣∣∣∣∣ ≤ |h|
∞∑
n=2

|an|n(n− 1)(|z|+ |h|)n−2

≤ |h|
∞∑
n=2

|an|n(n− 1)

(
R+ |z|

2

)n−2

. (1.6)

In (1.6) we used that

|h|+ |z| < δ + |z| < R− |z|
2

+ |z| = R+ |z|
2

.

Note that
R+ |z|

2
< R,

hence the power series converges for all |z| ≤ R. Taking the limit as h → 0 gives

15



1 Preliminaries to Complex Analysis

that for all |z| ≤ R

lim
h→0

∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=0

nanz
n−1

∣∣∣∣∣ = 0 ⇐⇒ f ′(z) = lim
h→0

f(z + h)− f(z)

h

=
∞∑
n=0

nanz
n−1.

This concludes the proof.
Lecture 4

Example 1.5.4

1. Exponential function:
∞∑
n=0

zn

n!
= ez,

(ez)′ = ez.

2. Trignometric functions:

cos z =
eiz + e−iz

2
=

∞∑
n=0

(−1)n z2n

(2n)!
,

sin z =
eiz − e−iz

2i
=

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
.

The trignometric functions are not bounded on C.
3. The geometric series

∞∑
n=0

zn

converges in D1(0) (for |z| < 1).

4. The alternating harmonic series

∞∑
n=1

(−1)n−1 z
n

n

converges for |z| < 1. It also converges for z = 1 (by Leibniz Criterion) but

diverges for z = −1, where it becomes the harmonic series.

16



1.6 Complex line integrals

1.6 Complex line integrals

Definition 1.6.1: Some basic definitions

A parametrised curve in C is a continuous function

γ : [a, b] −→ C

where [a, b] ⊂ R is a closed interval.

A smooth curve is a curve γ : [a, b] → C with γ(t) = x(t) + iy(t), for

which γ′(t) = x′(t) + iy′(t) exists for all t ∈ [a, b] and γ′(t) is continuous with

γ′(t) ̸= 0 for all t ∈ [a, b]. Here

γ′(a) = lim
h→0
h>0

γ(a+ h)− γ(a)

h
.

A piecewise smooth curve is a curve γ : [a, b] → C which is continuous

and there exist points a = a0 < a1 < · · · < an = b such that γ is smooth on

each [ai, ai+1].

A curve is called closed if γ(a) = γ(b).

A curve is called simple if it is not self intersecting i.e. γ(t) ̸= γ(s) unless

s = t or s = a, t = b.

γ̃ : [c, d] → C is called a reparametrisation of γ : [a, b] → C if there exists

a function σ : [c, d] → [a, b] which is bijective and σ′(t) > 0 (orientation

preserving) for all t ∈ [c, d] and γ̃ = γ ◦ σ.

There are some elementary methods to change or combine curves

1. Change of orientation: If γ : [a, b] → C. The reverse path is given by −γ or

γ−, where −γ : [a, b]→ C, t 7→ γ(b+ a− t).

2. If γ1 : [a, b] → C and γ2 : [a2, b2] → C two paths such that γ1(b1) = γ2(a1),

then the concatenation or the sum of the two paths γ1, γ2 is a path

γ1 + γ2 : [a1, b1 + b2 − a2] −→ C,

(γ1 + γ2) =

γ1(t) if a1 ≤ t ≤ b1

γ2(t− b1 + a2) if b1 ≤ t ≤ b1 + b2 − a2.

17



1 Preliminaries to Complex Analysis

Example 1.6.2

1. Given z1, z2 ∈ C, then the line segment between them is

γ : [a, b] −→ C

t 7−→ (1− t)z1 + tz2.

2. Let γ : [0, 4]→ C be defined by

γ(t) :=



t if 0 ≤ t ≤ 1

1 + i(t− 1) if 1 ≤ t ≤ 2

(3− t) + i if 2 ≤ t ≤ 3

i(4− t) if 3 ≤ 4.

This is a concatenation of 4 curves to form a square.

3. A circle with centre z0 and radius r has the paramatrisation

γ : [0, 2π] −→ C

t 7−→ z0 + reit.

Next we want to define complex path (line) integrals. Recall, if g : [a, b] → R
continuous then it is Riemann-integrable:∫ b

a
g(t)dt.

If h : [a, b]→ C, we can define the integral as the integral of the real and imaginary

parts: ∫ b

a
h(t)dt =

∫ b

a
h1(t)dt+ i

∫ b

a
h2(t)dt

where h(t) = h1(t) + ih2(t).

Definition 1.6.3: Path Integral

Suppose γ : [a, b] → C is a smooth path and f : Ω → C is a complex valued

function which is defined and continuous on γ. We define the integral of f

along γ by ∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

As long as we can show that the integral is independent of the parametrisation of

18



1.6 Complex line integrals

γ, this gives a well-defined definition for the path integral. Indeed, one can prove

that for γ̃ : [c, d]→ C where γ̃ = (γ ◦ σ) for some σ : [c, d]→ [a, b], then∫
γ̃
f(z)dz =

∫
γ
f(z)dz.

Proposition 1.6.4: Basic properties of path integrals

Let f, g : Ω → C continuous functions on γ, γ1, γ2, where γ, γ1 and γ2 are

piecewise smooth curves γ, γ1, γ2 : [a, b]→ C. Then,

1. The line integral is linear, that is, if a, b ∈ C, then∫
γ
(af + bg)dz = a

∫
γ
f dz + b

∫
γ
g dz.

2. If γ− is γ with the reverse orientation, then∫
γ
f(z)dz = −

∫
γ−

f(z)dz.

3. ∫
γ1+γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

4. We have ∣∣∣∣ ∫
γ
f(z)dz

∣∣∣∣ ≤ sup
z∈γ
|f(z)|length(γ)

where supz∈γ |f(z)| = supt∈[a,b] |f(γ(t))| and

length(γ) =

n−1∑
i=0

∫ ai+1

ai

|γ′(t)|dt.

Proof. 1. Follows directly from the linearity of the Riemann integral.

2. If γ : [a, b]→ C, then we define the reverse path γ− : [a, b]→ C by

γ−(t) = γ(a+ b− t),

and its derivative is

γ−
′
(t) = −γ′(a+ b− t).

This gives ∫
−γ

f(z) dz = −
∫ b

a
f(γ(a+ b− t))γ′(a+ b− t) dt.

19
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Now, let u = a+ b− t, so du = −dt. Then we have∫ a

b
f(γ(u))γ′(u) du = −

∫ b

a
f(γ(u))γ′(u) du

= −
∫
γ
f dz.

3. Follows directly if one writes it out.

4. We have ∣∣∣∣ ∫
γ
f(z)dz

∣∣∣∣ = ∣∣∣∣ n−1∑
i=0

∫ ai+1

ai

f(γ(t))γ′(t)dt

∣∣∣∣
≤

n−1∑
i=0

∫ ai+1

ai

|f(γ(t))||γ′(t)|dt

≤ sup
t∈[a,b]

|f(γ(t))|
n−1∑
i=0

∫ ai+1

ai

|γ′(t)|dt.

Lecture 5

Definition 1.6.5: Primitive

A primitive of f on Ω is a function F that is holomorphic on Ω and such

that F ′ = f .

Theorem 1.6.6: Path integrals and primitives

Let f : Ω → C continuous on Ω ⊂ C (open). If f has a primitive F in Ω

and γ is a curve which begins at z1 and ends at z2 (γ : [a, b] → Ω, γ(a) =

z1, γ(b) = z2).

Then ∫
γ
f(z)dt = F (z2)− F (z1).

Proof. Let F = u(x, y) + iv(x, y). First, assume γ is smooth. Define G : [a, b]→ C,
t 7→ F (γ(t)) = F (x(t), y(t)), where γ(t) = x(t) + iy(t). We compute

G′(t) = ux(x(t), y(t))x
′(t)+uy(x(t), y(t))y

′(t)+ i(vx(x(t), y(t))+vy(x(t), y(t))y
′(t)).

The Cauchy Riemann equations say that

ux = vy and uy = −vx,

20



1.6 Complex line integrals

hence,

G′(t) = ux(x(t), y(t))x
′(t) + uy(x(t), y(t))y

′(t) + i(vx(x(t), y(t)) + vy(x(t), y(t))y
′(t))

= (ux(x, y)x
′ − vx(x, y)y

′) + i(vx(x, y)x
′ + ux(x, y)y

′)

= (ux(x, y) + ivx(x, y))x
′(t) + (−vx(x, y) + ivx(x, y))y

′(t)

= (ux(x, y) + ivx(x, y))(x
′(t) + iy′(t))

= Fx(x(t), y(t))γ
′(t)

= F ′(x(t), y(t))γ′(t)

= f(x(t), y(t))γ′(t)

Hence, ∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt

=

∫ b

a
G′(t)dt

= G(b)−G(a)

= f(γ(b))− f(γ(b))

= f(z2)− f(z1)

If γ is piecewise smooth, then [a, b] = [a1, a1] ∪ · · · ∪ [an−1, an] (a = a0, b = an) and

γ = γ1 + · · ·+ γn−1 each γi = γ[ai,ai+1]. Then,∫
γ
f(z)dz =

∫
γ1

dz + · · ·+
∫
γn−1

dz

= F (γ(a1))− F (γ(a1) + F (γ(a2))− F (γ(a1)) + · · ·+ F (γ(an))− F (γan−1)

= F (γ(b))− F (γ(a)).

Corollary 1.6.7: Closed curve vs. primitive

If γ is a closed (γ(a) = γ(b)) curve on an open set Ω, f continuous on Ω

and has a primitive in Ω, then ∫
γ
f(x)dz = 0.
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Corollary 1.6.8: f ′ = 0

If f : Ω → C is holomorphic where Ω is open and connected. If f ′ = 0 then

f is constant.

Proof. We want to show that for any two points z, w ∈ Ω, f(z) = f(w). Since Ω is

open and connected, there is a (polygonal) path γ : [0, 1] → Ω connecting z to w

such that γ(0) = z, γ(1) = w. Now since f is holomorphic, f is clearly a primitive

of f ′, hence ∫
γ
f ′dz = f(γ(1))− f(γ(0))

= f(z)− f(w).

But since f ′ = 0 the integral on the left is zero. Hence f(z) = f(w).

Example 1.6.9

Let f : C \ {0} → C, z 7→ 1/z. Claim: f has no primitive on C \ {0}. Indeed, let

γ : [0, 2π]→ C, γ(t) = exp(it).∫
γ
f(z)dz =

∫ 2π

0
f(eit) · ieitdt = i

∫ 2π

0
dt = 2πi ̸= 0.

This shows that f cannot have a primitive.

Example 1.6.10

What is ∫
γ
z2dz,

where γ : [0, 1]→ C, t 7→ t+ πit2. F (z) = z3/3 is a primitive of f , hence,∫
γ
z2dz = F (γ(1))− F (γ(0)) =

(1 + πi)3

3
.

An alternative solution is to directly use the definition of the line integral:∫
γ
z2dz =

∫ 1

0

(
t+ πit2

)2
(1 + 2πit)dt

= · · · = (1 + πi)3

3
.
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Chapter 2

Cauchy’s Theorem and Its

Applications

If f is holomorphic in Ω ⊂ C an open subset and γ ⊂ Ω a closed curve whose interior

is contained in Ω, then ∫
γ
f(z)dz = 0.

2.1 Goursat’s Theorem

Theorem 2.1.1: Goursat’s Theorem

Let Ω ⊂ C be an open set and T ⊂ C a triangular with ∂T = γ, whose interior

is contained in Ω. Let f : Ω→ C a holomorphic function. Then∫
γ
f(z)dz = 0.

Proof. Note that a triangle T is a closed curve, which is the union of 3 line segments.

If T has corners at z1, z2, z3 ∈ Ω, with line segments α1, α2, α3 such that T =

α1 + α2 + α3 =
def
⟨z1, z2, z3⟩, where

α1(t) = z1 + (t− 0)(z2 − z1), 0 ≤ t ≤ 1,

α2(t) = z2 + (t− 1)(z3 − z2), 1 ≤ t ≤ 2,

α3(t) = z3 + (t− 2)(z1 − z3), 2 ≤ t ≤ 3.

∆ := {z ∈ C : z = t1z1 + t2z2 + t3z3, 0 ≤ t1, t2, t3, t1 + t2 + t3 = 1}, is the

smallest convex set containing zi, where i ∈ {1, 2, 3}. Note that im(T ) = ∂∆. Define
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2 Cauchy’s Theorem and Its Applications

T (n) =
〈
z
(n)
1 , z

(n)
2 , z

(n)
1

〉
as follows:

1. T (0) = T

2. When T (n) is defined as
〈
z
(n)
1 , z

(n)
2 , z

(n)
3

〉
, then T (n+1) is one of the following

4 (counterclockwise) triangular paths formed by joining the midpoints of the

sides of T (n):

T
(n+1)
1 =

〈
z
(n)
1 + z

(n)
2

2
, z

(n)
2 ,

z
(n)
2 + z

(n)
3

2

〉
,

T
(n+1)
2 =

〈
z
(n)
2 + z

(n)
3

2
, z

(n)
3 ,

z
(n)
1 + z

(n)
3

2

〉
,

T
(n+1)
3 =

〈
z
(n)
1 + z

(n)
3

2
, z

(n)
1 ,

z
(n)
1 + z

(n)
2

2

〉
,

T
(n+1)
4 =

〈
z
(n)
1 + z

(n)
2

2
,
z
(n)
2 + z

(n)
3

2
,
z
(n)
1 + z

(n)
3

2

〉
.

We notice that there will be some cancellations of line integrals along these paths,

this means that∫
T (n)

fdz =

∫
T

(n+1)
1

fdz +

∫
T

(n+1)
2

fdz +

∫
T

(n+1)
3

fdz +

∫
T

(n+1)
3

fdz.

Hence, ∣∣∣∣∫
T (n)

f(z)dz

∣∣∣∣ ≤ 4 max
1≤i≤4

∣∣∣∣∣
∫
T

(n+1)
i

f(z)dz

∣∣∣∣∣ .
We choose T (n) as one of T

(n)
i , 1 ≤ i ≤ 4, so that∣∣∣∣∫

T (n)

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
T (n+1)

f(z)dz

∣∣∣∣ .
Let ∆(n) be the field triangle with ∂∆(n) = T (n). By construction,

∆ = ∆(0) ⊇ ∆(1) ⊇ ∆(2) ⊇ · · · .

Put dn := diam
(
∆(n)

)
= supz,w∈∆(n) |z − w| and pn = perimeter of ∆(n). By

construction one can see that

dn =
d0
2n

and pn =
pn
2n

.
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Hence dn → 0 as n→ 0. Define

I :=

∣∣∣∣∫
T
fdz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

T (n)

fdz

∣∣∣∣ .
Let z0 be the unique point such that z0 ∈ ∆(n) for all n (which exists due to nesting

principle (Proposition 2.1.2)). Since f is holomorphic at z0, we have

f(z) = f(z0) + f ′(z0)(z − z0) + E(z − z0),

with

lim
z→z0

|E(z)|
z − z0

= 0.

Clearly E(z) is continuous at z0 and limz→z0 E(z) = 0. We compute∫
T (n)

f(z)dz =

∫
T (n)

f(z0) + f ′(z0)(z − z0) dz︸ ︷︷ ︸
=0

+

∫
T (n)

E(z)dz.

The first term vanishes because

g(z) = f(z0)z + f ′(z0)(z − z0)
2/2

is a primitive of the integrand. Hence we can reduce the estimate to

I =

∣∣∣∣∫
T
f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

T (n)

f(z)dz

∣∣∣∣ = 4n
∣∣∣∣∫

T (n)

E(z)dz

∣∣∣∣ .
Not let

In =

∣∣∣∣∫
T (n)

E(z)dz

∣∣∣∣ .
For given ε > 0, choose Dδ(z0) ⊂ Ω (δ > 0 small) such that

|E(z)| ≤ ε|z − z0|

for all z ∈ Dδ(z0). Because dn = diam
(
∆(n)

)
→ 0, there exists N ∈ N such that

25



2 Cauchy’s Theorem and Its Applications

dn < δ for all n ≥ N . This implies that ∆(n) ⊂ Dδ(z0) for all n ≥ N and we get

|I| = 4n|In|

= 4n
∣∣∣∣∫

T (n)

E(z)dz

∣∣∣∣
≤ 4n

∫
T (n)

|E(z)||dz|

≤ 4nε

∫
T (n)

|z − z0||dz|

≤ 4nεdn

∫
T (n)

|dz|

= 4nεdnpn

= 4nε
d0
2n

p0
2n

= εd0p0.

This implies I = 0 as ε > 0 is arbitrary.

Proposition 2.1.2: Nesting principle

If ∆(0) ⊇ ∆(1) ⊇ ∆(2) ⊇ · · · a sequence of non-empty compact sets in C with

the property diam
(
∆(n)

)
→ 0 as n → ∞. Then there exists a unique point

z0 ∈ C such that z0 ∈ ∆(n) for all n ∈ N.
Lecture 6

Corollary 2.1.3: Integral over a rectangle

If f is holomorphic in an open set Ω which contains a solid rectangle R and

its interior with ∂R = R. Then∫
R
f(z)dz = 0.

Theorem 2.1.4: Goursat 2nd version

If f is continuous on Ω ⊂ C and holomorphic on Ω \ {z0} for some z0 ∈ Ω,

then ∫
∂R

f(z)dz = 0,

where R is any rectangle whose interior is also in Ω.

Proof. Assume without loss of generality that z0 ∈ R. Let n be a positive integer.
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2.2 Cauchy’s Theorem in a disk

Divide the big rectangle into n2 congruent rectangles. Once again we have

∫
R
f(z)dz =

n∑
k=1

n∑
ℓ=1

∫
Rkℓ

f(z)dz.

If z0 /∈ Rkℓ then
∫
Rkℓ

f(z)dz = 0 by Corollary 2.1.3. If z0 ∈ Rkℓ, then∣∣∣∣∫
Rkℓ

fdz

∣∣∣∣ ≤M · (perimeter of Rkℓ) = M
L

n
,

where M = maxz∈R |f | and L = perimeter of R. The point z0 can belong to at

most four rectangles, hence ∣∣∣∣∫
R
f(z)dz

∣∣∣∣ ≤ 4ML

n
,

let n→∞ we get ∫
R
f(z)dz = 0.

2.2 Cauchy’s Theorem in a disk

Theorem 2.2.1: Holomorphic functions vs. primitive

A holomorphic function in an open disc D has a primitive in that disc.

Theorem 2.2.2: Integral over rectangles and primitives

Let D be an open disc in C and f a continuous function on D with the property

that ∫
∂R

f(z)dz = 0

for every closed rectangle R ⊂ D, whose sides are parallel to the coordinate

axis. Then f has a primitive in D.

We will use this theorem to prove Cauchy’s Theorem.
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Theorem 2.2.3: Cauchy’s Theorem in a disc

Suppose D ⊂ C is an open disc, f holomorphic in D (or more generally,

continuous in D and holomorphic in D \ {z0} for some z0 ∈ D). Then∫
γ
f(z)dz = 0

for every closed (piecewise smooth) curve in D.

Proof. Suppose f is continuous inD and holomorphic inD\{z0}. Then by Goursat’s

Theorem 2.1.4, ∫
R
f(z)dz = 0

for every rectangle, in particular also the ones whose sides are parallel to the coor-

dinate axis. Then by Theorem 2.2.2, f has a primitive in D, hence, by Corollary

1.6.7 ∫
γ
f(z)dz = 0.

Proof of Theorem 2.2.2. Let z0 = x0 + iy0 be the centre of the disc D. Let z ∈ D

with z = x+ iy ̸= z0. Let z1 = x+ iy0 and z2 = x0 + iy. By assumption,∫
R
f(z)dz = 0,

so we have

0 =

∫ z2

z0

f(z)dz +

∫ z

z2

f(z)dz +

∫ z1

z
f(z)dz +

∫ z0

z1

f(z)dz,

where the upper and lower limits are to be understood as begin- and endpoints of

the line integral along the edges of the triangle. We define F : D → C as follows.

For z ∈ D

F (z) :=

∫ z2

z0

f(w)dw +

∫ z

z2

f(w)dw.

Using the previous equation we have

F (z) =

∫ z1

z0

f(w)dw +

∫ z

z1

f(w)dw.
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We parametrise the line segments to get

F (z) = i

∫ y

y0

f(x0 + it)dt+

∫ x

x0

f(t+ iy)dt (2.1)

or

F (z) =

∫ x

x0

f(t+ iy0)dt+ i

∫ y

y0

f(x+ it)dt. (2.2)

The Fundamental Theorem of Calculus states that if g : (a−r, a+r)→ C continuous,

then
d

dx

∫ x

a
g(t)dt = g(x).

We now use this result and differentiate (2.1) and (2.2) with respect to x and y

respectively to get
∂F

∂x
(z) = f(x+ iy)

and
∂F

∂y
(z) = if(x+ iy),

both of which are continuous by assumption, hence F is C1 as a real function. If

we write F = U + iV , we get

f(z) =
∂F

∂x
=

∂U

∂x
+ i

∂V

∂x

= −i∂F
∂y

= −i
(
∂U

∂y
+ i

∂V

∂y

)
=

∂V

∂y
− i

∂U

∂y
.

This shows that F satisfies the Cauchy Riemann equations. We can apply Theorem

1.4.2 to obtain that F is holomorphic and F ′(z) = ∂
∂xF (z) = f(z). Therefore, we

conclude that f has a primitive F .
Lecture 7

Corollary 2.2.4: Integral over a circle

f is holomorphic in an open set containing a circle and its interior, then∫
C
f(z)dz = 0.

Theorem 2.2.5: Cauchy’s Theorem

If f is holomorphic in Ω, γ is a closed curve whose interior is also in Ω,

then ∫
γ
f(z)dz = 0.
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2 Cauchy’s Theorem and Its Applications

Remark. Corollary 2.2.4 is in fact valid whenever we can defined the interior of a

contour unambiguously and construct polygonal paths in an open neighbourhood of

the contour and its interior. Any closed curve where the notion of interior is obvious

is called a “toy contour”. They are useful because we can deform every loop into a

circle which is homotopic to it, the domains are indeed simply connected.

Remark. Note that Cauchy’s Theorem does not say anything about the integral

of f over arbitrary closed curves. Indeed for f(z) = 1/z, Ω = C\{0}, and γ = C1(0),

we have ∫
C1(0)

1

z
dz = 2πi ̸= 0,

because C \ {0} is not simply connected.

2.3 Applications of Cauchy’s Theorem

Now we will see some concrete examples of how to apply Cauchy’s Theorem on

integrals.

Example 2.3.1

Using Cauchy’s Theorem on a disc one can show∫
R

1

z − z0
dz = 2πi,

where R is any rectangle with centre at z0.

Example 2.3.2

The Fresnel integrals are given by:∫ ∞

0
cos
(
x2
)
dx =

∫ ∞

0
sin
(
x2
)
dx =

√
2π

4
.

Proof. Note that exp
(
ix2
)
has real and imaginary parts cosx2 and sinx2. If we can

prove ∫ ∞

0
exp
(
ix2
)
dx = (1 + i)

√
2π

4
,

then we are done. In this way, we are led naturally to

f(z) = exp
(
iz2
)
,

which is holomorphic in C. The contour we choose is the one along the sides of a
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2.3 Applications of Cauchy’s Theorem

sector of π/4: first through radius γ1, then through the arc γ2, and through the

radius again γ3:

γ1 = t 0 ≤ t ≤ R,

γ2 = Reit 0 ≤ π

4
,

γ3 = teiπ/4 0 ≤ t ≤ R.

Re

Im

γ1

γ2

−γ3

0 R

Reiπ/4

Let γ be the concatenation of the three paths. By Theorem 2.2.3 (Cauchy’s Theorem

in a disc) we get ∫
γ
exp
(
iz2
)
dz = 0,

which translates into∫ R

0
eit

2
dt = −

∫
γ2

eiz
2
dz +

∫
γ3

eiz
2
dz

= −
∫
γ2

eiz
2
dz + eiπ/4

∫ R

0
e−t2dt.

We claim that ∣∣∣∣∫
γ2

eiz
2
dz

∣∣∣∣ ≤ π(1− e−R2
)

4R
.

Indeed, we notice that the sine function is concave for x ∈ [0, π/2]:

(sinx)′′ = − sinx ≤ 0 ∀x ∈ [0, π/2],

which means that the graph of sine lies above the line joining (0, 1) and (π/2, 1). In

other words

sin(x) ≥ 2

π
x ∀x ∈ [0, π/2],
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2 Cauchy’s Theorem and Its Applications

which is equivalent to

sin(2t) ≥ 4

π
t ∀t ∈ [0, π/4].

This implies that

∣∣∣∣∫
γ2

eiz
2
dz

∣∣∣∣ =
∣∣∣∣∣
∫ π

4

0
exp
(
i(Reit)2

)
iReitdt

∣∣∣∣∣
≤
∫ π

4

0

∣∣exp(iR2(cos(2t) + i sin(2t))
)∣∣R|ieit|dt

= R

∫ π
4

0
exp
(
−R2 sin(2t)

) ∣∣exp(iR2 cos(2t)
)∣∣dt

= R

∫ π
4

0
exp
(
−R2 sin(2t)

)
dt

≤ R

∫ π
4

0
exp

(
−R2 · 4

π
t

)
dt

= − π

4R
exp

(
−R2 · 4

π
t

)∣∣∣∣π/4
0

=
π(1− e−R2

)

4R
.

Hence the claim is valid and this integral converges to 0 as R → ∞. As R → 0,

what we have left is only∫ ∞

0
eix

2
dx = lim

R→0
eiπ/4

∫ R

0
e−it2dt =

(1 + i)
√
2

2

∫ ∞

0
e−t2dt = (1 + i)

√
2π

4
.

2.4 Cauchy Integral Formulas

Theorem 2.4.1: Cauchy Integral Formula

Suppose f is holomorphic in an open set Ω ⊂ C that contains the closure of a

disc D. If C denotes the boundary of the circle on D with positive orientation,

then
1

2πi

∫
C

f(w)

w − z
dw = f(z)

for all z ∈ D.

Proof. Let z ∈ Dr(z0), Dr(z0) ⊂ Ω. There exists ε > 0 such that Dr+ε(z0) ⊂ Ω.
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2.4 Cauchy Integral Formulas

For w ∈ Dr+ε(z0), we define

g(w) :=


f(w)−f(z)

w−z if w ̸= z

f ′(z) if w = z.

g : Dr+ε(z0) → C is continuous and away from z it is holomorphic. By Theorem

2.2.3 (Cauchy’s Theorem in a disk) applied to g we have∫
Cr(z0)

g(w)dw = 0,

i.e. ∫
Cr(z0)

f(w)− f(z)

w − z
dw = 0,

which implies that ∫
Cr(z0)

f(w)

w − z
dw = f(z)

∫
Cr(z0)

dw

w − z
.

We will be done if we can show∫
Cr(z0)

dw

w − z
= 2πi.

We define γ to paramterize the circle in a special way: First let γ(t) := z0 + reit.

Another parametrisation is γ̃(s) = z + ρ(s)eis. Here t changes with s and ρ :

[0, 2π]→ R, ρ(s) = |γ(t(s))− z| = |γ̃(s)− z|. The derivative of γ̃ is

γ̃′(s) = ρ′(s)eis + iρ(s)eis.

Hence, ∫
Cr(z0)

dw

w − z
=

∫ 2π

0

ρ′(s)eis + iρ(s)eis

ρ(s)eis
ds

=

∫ 2π

0

ρ′(s)

ρ(s)
ds︸ ︷︷ ︸

ln |ρ(s)|
∣∣2π
0

=0

+i

∫ 2π

0
ds︸ ︷︷ ︸

2πi

= 2πi,

since ρ(2π) = 0.

Remark. Cauchy Integral Formula says that the value of f inD is only determined
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2 Cauchy’s Theorem and Its Applications

by its values on the boundary C.

Example 2.4.2

We will show that e−πx2
is its own Fourier transform. For a function f : R → C

which is Riemann integrable on every [a, b] and∫ ∞

−∞
|f(t)|dt < +∞,

i.e. converges, the Fourier transform is defined as

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πiξxdx.

We claim that

f̂(ξ) = e−πξ2 ,

for f(x) = e−πx2
. We want to show that e−πξ2 =

∫∞
−∞ e−πx2

e−2πiξxdx, which is

equivalent to

1 =

∫ ∞

−∞
e−πx2

e−2πiξx2
eπξ

2
dx =

∫ ∞

−∞
e−π(x+iξ)2dx.

We know that ∫ ∞

−∞
e−πx2

dx = 1.

We want to consider a rectangle with vertices at (−R, 0), (R, 0), (−R, ξ) = −R+ iξ

and (R, ξ) = R+ iξ, and let γR the closed path along its sides. It is clear that∫
γR

f(z)dz = 0.

Note that on γ1, which is the horizontal side on the real axis,∫ R

−R
e−πx2

dx→ 1 as R→∞.

The same happens for γ3. Consider γ2,∫
γ2

f(z)dz =

∫ ξ

0
f(R+ iy)dy,
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2.4 Cauchy Integral Formulas

hence, ∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ = ∣∣∣∣∫ ξ

0
e−π(R2+2iRy−y2dy

∣∣∣∣
≤ ξ sup

0≤y≤ξ

∣∣∣e−πR2 · e−2πiRy · eπy2
∣∣∣

≤ Ce−πR2
.

As R→∞ the two vertical integrals go to 0.
Lecture 8

Theorem 2.4.3: Condition power series expansion

Suppose f is holomorphic in an open set Ω. Let z0 ∈ Ω and r > 0, such that

Dr(z0) ⊂ Ω. Then f has a power series expansion at z0,

f(z) =
∞∑
n=0

an(z − z0)
n

for all z ∈ Dr(z0). Moreover,

an =
f (n)(z0)

n!
=

1

2πi

∫
Cr(z0)

f(w)

(w − z0)n+1
dw.

Proof. Fix s ∈ (0, r), let Cs(z0) be the circle of radius s, centred at z0. Then by

Theorem 2.4.1 (Cauchy Integral Formula),

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

for all z ∈ Ds(z0) and γ is the positive oriented parametrisation of Cs(z0). We

rewrite the expression above,

1

w − z
=

1

(w − z0)− (z − z0)
=

1

w − z0

(
1

1− z−z0
w−z0

)
.

We are integrating on γ for some w ∈ γ, so∣∣∣∣ z − z0
w − z0

∣∣∣∣ = |z − z0|
s

< 1.
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2 Cauchy’s Theorem and Its Applications

Hence we can write the expression as a geometric series

1

1− z−z0
w−z0

=

∞∑
n=0

(
z − z0
w − z0

)n

for w ∈ γ and z ∈ Ds(z0). The convergence is uniform due to the bound

|z − z0|
s

< 1,

which does not depend on w. Substituting this expression into the equation we get

f(z) =
1

2πi

∫
γ
f(w)

∞∑
n=0

(z − z0)
n(w − z0)

−(n+1)dw

=
1

2πi

∞∑
n=0

(z − z0)
n

∫
γ
f(w)(w − z0)

−(n+1)dw

=
∞∑
n=0

an(z − z0)
n,

where

an =
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw.

Hence f is the sum of the power series

∞∑
n=0

an(z − z0)
n, z ∈ Ds(z0).

The derivative can be given by term-wise differentiation,

f ′(z) =
∞∑
n=1

nan(z − z0)
n−1

=

∞∑
n=0

(n+ 1)an+1(z − z0)
n

Evaluating at z = z0 gives

a0 = f(z0)

1a1 = f ′(z0)

...

n!an = f (n)(z0).
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2.4 Cauchy Integral Formulas

The coefficients are independent of s, hence the series converges in the whole disc.

Remark. Note this shows that if f is differentiable at z0, in fact it is differentiable

infinitely many times at z0.

Corollary 2.4.4: Cauchy Integral Formula for derivatives

If f ∈ H(Ω), then f is infinitely many times differentiable in Ω. If z0 ∈ Ω

such that for r > 0, Dr(z0) ⊂ Ω, then for all z ∈ Dr(z0),

f (n)(z) =
n!

2πi

∫
Cr(z0)

f(w)

(w − z)n+1
dw.

This is the Cauchy Integral Formula for derivatives.

Proof. We use induction on n.

n = 0: this is the Cauchy Integral Formula, which we proved.

Assume n− 1:

f (n−1)(z) =
(n− 1)!

2πi

∫
Cr(z0)

f(w)

(w − z)n
dw

Choose h small such that z and z + h stays away from the boundary circle and we

have

f (n−1)(z + h)− f (n−1)(z)

h
=

(n− 1)!

2πi

∫
Cr(z0)

f(w)

h

(
1

(w − z − h)n
− 1

(w − z)n

)
dw.

Now if you have an − bn, then

an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1).

with

a =
1

w − z − h
and b =

1

w − z
,

then
a− b

h
→ 1

(w − z)2

and

an−1 + an−2b+ · · ·+ bn−1 → n

(w − z)n−1

37



2 Cauchy’s Theorem and Its Applications

for h→ 0 and the convergence is indeed uniform. Hence we get

lim
h→0

f (n−1)(z + h)− f (n−1)(z)

h
=

(n− 1)!

2πi

∫
γ
f(w)

(
1

(w − z)2
n

(w − z)n−1

)
dw,

which is exactly equal to
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw.

Again, here γ denotes Cr(z0).

Corollary 2.4.5: Cauchy Inequality

If f ∈ H(Ω), then f is infinitely many times differentiable in Ω. If z0 ∈ Ω

such that for r > 0, Dr(z0) ⊂ Ω , then for all z ∈ Dr(z0) we have

∣∣∣f (n)(z0)
∣∣∣ ≤ n!∥f∥Cr(z0)

rn
,

where ∥f∥Cr(z0) = sup|w−z0|=r |f(w)|.

Proof. This follows from

|an| =
∣∣∣∣fn(z0)

n!

∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
Cr(z0)

f(w)

(w − z0)n+1
dw

∣∣∣∣
and then

|n!an| = |fn(z0)| =
n!

2π

∣∣∣∣ ∫ 2π

0

f(z0 + reiθ)

(reiθ)n+1
ireiθdθ

≤ n!

2π

∫ 2π

0

|f(z0 + reiθ)|
rn

dθ

≤ n!

2π

||f ||C
rn

.

An immediate corollary from these results is the remarkable Liouville’s theorem.

Theorem 2.4.6: Liouville’s Theorem

If f ∈ H(C) and bounded, then f is constant.

Proof. Since C is connected, to show that f is constant, it suffices to show that

f ′ ≡ 0. Since f is holomorphic everywhere, by Corollary 2.4.5 (Cauchy Inequality)
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2.4 Cauchy Integral Formulas

we have ∣∣f ′(z0)
∣∣ ≤ ∥f∥Cr(z0)

r
.

But f is bounded, say f(z) < M , then

|f ′(z0)| <
M

r

for all r > 0. Let r →∞ to get f ′(z) = 0.

Corollary 2.4.7: Fundamental Theorem of Algebra

Every polynomial P (z) = anz
n+ · · ·+a0 of degree n ≥ 1 has precisely n roots

in C, counting multiplicities, and

P (z) = an(z − w1) · · · (z − wn).

Proof. Idea: We first show P has a root in C. Suppose not, let Q(z) = 1/P (z), then

Q(z) ∈ H(C). The idea is to show that Q is bounded in C, which will imply Q(z)

is a constant, hence P (z) is constant, contradiction.
Lecture 9

Remark. In Liouville’s Theorem, the assumption that f is holomorphic on all of

C is essential: Let Ω = {z ∈ C|Re(z) > 0} and f : Ω→ C,

f(z) =
1

z + 1

is bounded but not constant.

Our next goal is to show that if Ω is open, connected f ∈ H(Ω) and f vanishes on

an infinite set Z of distinct points, with a limit point z0 ∈ Ω \ Z then f ≡ 0.

Remark. Holomorphic functions can have infinitely many zeros. For example

f(z) = cos(z), which has zeroes at z = (2k+ 1)π/2. But we will see that the zeroes

are isolated, which means that we can find at each zero a neighbourhood of it such

that there are no other zeroes in this neighbourhood.

It can also happen that f has no zeroes, like the exponential function f(z) = ez.

Definition 2.4.8: Limit Point

z0 ∈ C is a limit point of a set Ω, if there exists a sequence (zn)
∞
n=0 ⊂ Ω\{z0}

such that limn→∞ zn = z0. Hence for r > 0, Ω ∩ (Dr(z0) \ {z0}) ̸= ∅.
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2 Cauchy’s Theorem and Its Applications

Definition 2.4.9: Order of null

Let Ω be open, z0 ∈ Ω and f ∈ H(Ω). The order of zero of f at z0, denoted

by ordz0 f , nz0(f), or νz0(f), is either ∞ if f (k)(z0) = 0 for all k ≥ 0, or the

smallest positive integer k such that f(z0) = f ′(z0) = · · · = f (k−1)(z0) = 0,

but f (k)(z0) ̸= 0. If f(z0) ̸= 0, then k = 0. In symbols,

ordz0 f = min{k ∈ N : f (k)(z0) ̸= 0}.

Proposition 2.4.10:

Let Ω open, z0 ∈ Ω and f ∈ H(Ω). Then

1. If ordz0 f = ∞ then f(z) = 0 for any z ∈ Dr(z0) and Dr(z0) ⊂ Ω is

(i.e. f is locally zero).

2. If ordz0 f ̸= ∞, then there exist a disk Dr(z0) ⊂ Ω, a unique h ∈
H(Dr(z0)), and a unique n ∈ N such that

f(z) = (z − z0)
nh(z)

for all z ∈ Dr(z0), where h(z0) ̸= 0, n = ordz0 f .

3. For any f, g ∈ H(Ω) there is ordz0(f + g) ≥ min{ordz0 f, ordz0 g},
ordz0(fg) = ordz0 f + ordz0 g.

Proof.

Proof of 1. By a previous theorem, since holomorphic functions are analytic, there

exists r > 0 such that for all z ∈ Dr(z0) ⊂ Ω, we have

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

for all z ∈ Dr(z0). Hence if f (n)(z0) = 0 for all n ∈ N then f ≡ 0 in Dr(z0).

Proof of 2. If ordz0 f ̸= ∞, then by definition there exists k ≥ 0 such that f(z0) =

f ′(z0) = · · · = f (k−1)(z0) = 0. Again as above we can use the power series expansion

of f to claim that there exists r ≥ 0 with Dr(z0) ⊂ Ω, such that for all z ∈ Dr(z0),

f(z) =
f (k)(z0)

k!
(z − z0)

k +

∞∑
n=k+1

f (n)(z0)

n!
(z − z0)

n,
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2.4 Cauchy Integral Formulas

which leads to

f(z) = (z − z0)
k

f (k)(z0)

k!︸ ︷︷ ︸
̸=0

+
∞∑

m=1

f (m+k)(z0)

(m+ k)!
(z − z0)

m


︸ ︷︷ ︸

̸=0 at z=z0

.

Now let

h(z) :=
∞∑

m=0

f (m+k)

(m+ k)!
(z − z0)

m

for all z ∈ Dr(z0), where h ∈ H(Dr(z0)) and h(z0) ̸= 0. Note as h ∈ H(Dr(z0)), it

is also continuous. h(z0) ̸= 0, h together with continuity implies the existence of ε

with 0 < ε < r such that h(z) ̸= 0 in Dε(z0).

Moreover, h and ordz0 f = 0 is unique. Assume not, then

f(z) = (z − z0)
nh(z) = (z − z0)

mg(z),

with h, g holomorphic and non-zero at z0. If m > n, we get h(z) = (z − z0)
m−ng(z)

for z ̸= z0. But now taking limit z → z0 we get h(z0) = 0 unless m− n = 0. Hence

m = n and g(z) = h(z).

Proof of 3. For the third part, note that for any k, (f+g)(k)(z0) = f (k)(z0)+g(k)(z0),

so ordz0(f + g) ≥ min{ordz0 f, ordz0 g}.
For the order of fg at z0, we write f(z) = (z − z0)

ordz0 fh1(z) and g(z) = (z −
z0)

ordz0 gh2(z), hence

fg = (z − z0)
ordz0 f+ordz0 gh1(z)h2(z),

where h1(z)h2(z) ̸= 0 at z0. This shows that ordz0(fg) = ordz0 f + ordz0 g.

Theorem 2.4.11:

Let Ω ⊂ C open, f ∈ H(Ω), z0 ∈ Ω. Assume f(z0) = 0, ordz0 f ≥ 1. If

ordz0 f ̸=∞, then there exists δ > 0 such that f(z) ̸= 0 if z ∈ Dδ(z0) \ {z0}.

Proof. By previous proposition there exists r > 0 such that for all z ∈ Dr(z0),

f(z) = (z − z0)
nh(z) with h(z0) ̸= 0. Using the continuity if necessary we can go

to a similar disk Dδ(z0), 0 < δ < r, such that h(z) ̸= 0 on Dδ(z0), which means

(z − z0)
n ̸= 0 on D∗

δ (z0). Hence f(z) ̸= 0 on D∗
δ (z0).
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2 Cauchy’s Theorem and Its Applications

Theorem 2.4.12:

Let Ω open and connected, f ∈ H(Ω). Let Z be an infinite set with a limit

point z0 ∈ Ω, z0 /∈ Z. If f(z) = 0 for all z ∈ Z, then f ≡ 0.

Corollary 2.4.13: Principle of analytic continuation

Suppose f, g ∈ H(Ω), Ω open and connected and f(z) = g(z) for all z ∈ U ⊆
Ω, U open, nonempty (or more generally for all sequence of distinct points in

Z), with limit point in Ω, then f = g.

Proof. We apply Theorem 2.4.12 to f − g.

Note if U ⊂ Ω open and U ̸= ∅, then for z0 ∈ U , there exists Dr(z0) such that

Dr(z0) ⊂ U . The sequence
(
z0 +

r
n+1

)∞
n=1
⊂ Dr(z0) ⊂ U has a limit point z0 ∈

Ω \
(
z0 +

r
n+1

)∞
n=0

. Now by assumption f agrees with g on U and in particular,

on this sequence of distinct points, hence we can apply Theorem 2.4.12 to obtain

f − g ≡ 0.

Remark.

1. Corollary 2.4.13 is is called principle of analytic continuation because if f ∈
H(Ω), Ω open and connected and Ω ⊂ Ω̃ open and connected, then there is

at most one f̃ ∈ H(Ω̃) such that f(z) = f̃(z) for all z ∈ Ω. f̃ is called the

analytic continuation of f and is unique if it exists.

2. The assumption that Ω is connected is essential. If Ω = Ω1∪Ω2, Ωi ̸= ∅ open,

Ω1 ∩ Ω2 = ∅, one can defined f, g : Ω→ C with f |Ω1 = 1, f |Ω2 = 0, g = 0. f

and g coincide on Ω2 but not on Ω1.

3. The condition that limit point of zeroes is in Ω is also crucial. Consider

f : C \ {0} −→ C

z 7−→ sin
(π
z

)
.

We know that

sin
π

z
=

exp
(
iπ
z

)
− exp

(−iπ
z

)
2i

and

f(i) =
eπ − e−π

2i
̸= 0.
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2.4 Cauchy Integral Formulas

f has a sequence f
(
1
n

)
= sin(πn) = 0 for all n ≥ 1, but lim 1

n = 0 /∈ Ω.

Example 2.4.14

Let f(z) =
∑∞

n=0 z
n on D1(0) = Ω, let f̃(z) = 1

1−z with Ω̃ = C \ {0}, but the two

functions do not agree everywhere.

We will prove the following theorem which proves Theorem 2.4.12.

Theorem 2.4.15:

Let Ω be open connected, f ∈ H(Ω). Then the following are equivalent

1. f ≡ 0.

2. There exists a point a ∈ Ω such that f (n)(a) = 0 for all n ≥ 0.

3. {z ∈ Ω : f(z) = 0} has a limit point in Ω.

Proof. Clearly 1. =⇒ 3. We will show 3. =⇒ 2. =⇒ 1.

3. =⇒ 2. Define Z := {z ∈ Ω : f(z) = 0} which has a limit point a ∈ Ω. Let

r > 0 such that Dr(a) ⊂ Ω, where a is a limit point of Z. By definition there

exists (zn)
∞
n=0 ∈ Z \ {a} such that limn→∞ zn = a. But then 0 = limn→∞ f(zn) =

f(limn→∞ zn) = f(a). We claim that f (n)(a) = 0 for all n ≥ 0. We suppose this

is not the case, then there exists n ≥ 0 such that f(a) = · · · = f (n−1)(a) = 0 but

f (n)(a) ̸= 0. f is analytic, it means that there exists Dr(a) ⊂ Ω where f is equal to

its power series expansion

f(z) =

∞∑
k=0

ak(z − a)k.

Similar to the proof of Proposition 2.4.10, it follows from the power series represen-

tation that f(z) = (z−a)ng(z) for a function g(a) ̸= 0 and analytic in Dr(a). Again

using continuity we have g(z) ̸= 0 for all z ∈ Dε(a) for some ε > 0. Then, f(z) ̸= 0

for all z ∈ D∗
z(a), so Z ∩D∗

ε(a) = ∅, which contradicts that a is a limit point.

2. =⇒ 1. Let A = {z ∈ Ω : f (n)(z) = 0 ∀n ∈ N0} be the set of points such that

derivatives of all orders are zero. By assumption this set is non-empty. We will

show that A = Ω which will show f ≡ 0 and hence 1. holds. Recall, for an open set

Ω connected means that the only both open and closed sets are ∅ and Ω. Hence to

show that A = Ω, since it is not empty, we need to show A is open and closed.

Claim 1: A is open.
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2 Cauchy’s Theorem and Its Applications

Let c ∈ A and r > 0 such that Dr(c) ⊂ Ω, and

f(z) =
∞∑
n=0

an(z − c)n

for all z ∈ Dr(c), with

an =
f (n)(c)

n!
= 0 since c ∈ A.

Hence, f(z) = 0 for every z ∈ Dr(c) and Dr(c) ⊂ A, thus A is open.

Claim 2: A is closed.

We want to show that if (zk)
∞
n=0 is a sequence of points in a and limk→∞ zk = c ∈ Ω,

then c ∈ A, i.e. A contains all its limit points1. We have that f (n)(zk) = 0 since

zk ∈ A, and since f (n) are all continuous,

0 = lim
k→∞

f (n)(zk) = f (n)

(
lim
k→∞

zk

)
= f (n)(c).

Hence c ∈ A.

Corollary 2.4.16: Identity Theorem

f, g ∈ H(Ω) open and connected, Ω ̸= ∅. Then the following are equivalent.

1. f = g.

2. There exists a ∈ Ω such that f (n)(a) = g(n)(a) for all n ≥ 0.

3. {z ∈ Ω : f(z) = g(z)} has a limit point in Ω.

Lecture 10

Remark. The Identity Theorem makes it clear that the identities we have for

sin(x), cos(x) and ex can be extended to the complex values. For example, sin(z),

cos(x) are entire and for z = x ∈ R we have

sin2(x) + cos2(x) = 1.

Let f(z) = sin2(z)+cos2(z) and g(z) = 1. Since f and g agree on the real line, they

have to agree on all of C, so we have

sin2(z) + cos2(z) = 1 ∀ z ∈ C.
1Strictly speaking, c is not a limit point because it may not be distinct from zk for all k ∈ N.

However, on the one hand, we know that A is closed if and only if all convergent sequences in A
converge in A, which is shown here; on the other hand, A containing all its limit points also implies
it is closed.

44



2.4 Cauchy Integral Formulas

Remark. The Identity Theorem has a natural extension to function of 2 variables.

We first consider the following example.

exp(x+ y) = exp(x) exp(y)

for all x, y ∈ R. We first conclude that

exp(z + y) = exp(z) exp(y)

∀ z ∈ C, fixed y ∈ R, y arbitrary. Applying the Identity Theorem once more we get

exp(z + w) = exp(z) exp(w)

for all z, w ∈ C. Now we have a look at the general result.

Let Ω ∈ C be open and connected, containing a set U ⊂ Ω which itself contains a

sequence of points with limit point also in U . Let F (z, w) be a function defined for

z, w ∈ Ω such that F (z, w) is analytic in z for fixed w and vice versa. If F (z, w) = 0

whenever z, w ∈ U , then F (z, w) = 0 for all z, w ∈ Ω.

Theorem 2.4.17: fg = 0

Let f, g ∈ H(Ω), where Ω is open and connected. If fg = 0 then either f ≡ 0

or g ≡ 0.

Proof. Suppose fg = 0 and f ̸= 0. We want to show g ≡ 0. Since f ̸= 0, there exists

a ∈ Ω such that f(a) ̸= 0. By continuity of f there exists ε > 0 such that Dε(a) ⊂ Ω

and f(z) ̸= 0 in Dε(a). By assumption, f(z)g(z) = 0 for all z ∈ Dε(a) ⊂ Ω. Since

f ̸= 0, it implies g = 0 for all z ∈ Dε(a). We can now apply the Identity Theorem

to g and conclude g ≡ 0.

Remark. Let Ω ⊂ C be an open set, then analytic functions on Ω, H(Ω) is a ring.

What Theorem 2.4.17 says is: if Ω is connected then H(Ω) is an integral domain. Lecture 11

Recall that Goursat’s Theorem 2.1.1 states that if f : Ω → C is a holomorphic

function and T ⊂ Ω is a triangle whose interior is contained in Ω, then∫
T
f(z)dz = 0.

A converse to this is the following theorem.

45



2 Cauchy’s Theorem and Its Applications

Theorem 2.4.18: Morera’s Theorem

Let Ω ⊂ C be an open set and f : Ω→ C a continuous function. Assume that

for any open disc D ⊂ Ω and any triangle T whose interior is also in D we

have ∫
T
f(z)dz = 0,

then f is holomorphic on Ω.

Proof. Let z0 ∈ Ω and Dr(z0) ⊂ Ω. Let z ∈ Dr(z0), we define

F (z) =

∫
γz

f(w)dw,

where

γz : [0, 1] −→ C

t 7−→ z0(1− t) + z(t),

denoted by γz = [z0, z]. Then for small h with z + h ∈ Dr(z0) there is

F (z + h)− F (z) =

∫
σz

f(w)dw,

where σz = [z, z + h], since by assumption∫
T (z0,z,z+h)

f(w)dw = 0.

Using continuity of f we can show

lim
h→0

F (z + h)− F (z)

h
= f(z).

More specifically, we proceed as follows.

F (z + h)− F (z) =

∫
[z,z+h]

f(w) + f(z)− f(z)dw

= f(z)

∫
[z,z+h]

dw︸ ︷︷ ︸
=h

+

∫
[z,z+h]

f(z)− f(w)dw︸ ︷︷ ︸
≤h supw∈[z,z+h] |f(z)−f(w)|
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2.5 Sequences of holomorphic functions

Since f is continuous, supw∈[z,z+h] |f(z)− f(w)| → 0 as h→ 0. This gives∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣→ 0 as h→ 0.

Hence F is holomorphic and F ′ = f for z ∈ Dr(z0). It follows that f is also

holomorphic being the derivative of the holomorphic function F .

2.5 Sequences of holomorphic functions

In Real Analysis one sees that if fn converges pointwise to f and fn is continuous,

then f is not necessarily continuous. This can be corrected if we have uniform

convergence: the uniform limit of a sequence of continuous functions (fn)
∞
n=0 is also

continuous. Also the line integrals∫
γ
fn(x)ds→

∫
γ
f(x)ds.

But even if fn ’s are differentiable, f does not need to be.

Recall: A sequence f1, f2, · · · : Ω → C is called uniformly convergent to f if for all

ε > 0 there exists N ∈ N such that for all n ≥ N and z ∈ Ω

|fn(z)− f(z)| < ε.

Definition 2.5.1: Locally Uniformly Convergent

Let Ω ⊂ C open and fn : Ω → C a sequence of functions. (fn)
∞
n=0 is called

locally uniformly convergent or uniformly convergent on compact sets if

one of the following equivalent conditions are satisfied.

1. For all a ∈ Ω there exists ε > 0 such that Dε(a) ⊂ Ω such that fn|Dε(a)

converges uniformly.

2. For every compact set K ⊂ Ω, fn|K converges uniformly.

Proposition 2.5.2: Uniform convergence and continuity

Let (fn)
∞
n=0 be a sequence of continuous functions fn : Ω → C. If (fn)

∞
n=0

converges uniformly on a compact set to f , then f is continuous.

Proof. Exercise.
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2 Cauchy’s Theorem and Its Applications

Theorem 2.5.3: Uniform convergence and holomorphicity

Let (fn)
∞
n=0 be a sequence of holomorphic functions on Ω ⊂ C, Ω open. If

(fn)
∞
n=0 converges uniformly in every compact subset of Ω to f , then f is also

holomorphic.

Proof. By Proposition 2.5.2, f is continuous and we will show that it is also holo-

morphic by using Morera’s Theorem 2.4.18, i.e., it is enough to show that∫
T
f(w)dw = 0

for any disc D and triangle T , whose interior is contained in D. Let D = Dr(z0) ⊂ Ω

and T any triangle contained in D. We have that∫
T
fn(w)dw = 0

for all n ∈ N by Goursat’s Theorem 2.1.1. Since (fn)
∞
n=0 converges to f on compact

sets, ∣∣∣∣∫
T
fn(z)dz −

∫
T
f(z)dz

∣∣∣∣ ≤ ∫
T
|fn(z)− f(z)|dz

≤ sup
z∈T
|fn(z)− f(z)| · length(T ).

Since fn → f uniformly on compact sets and in particular on T , we have

lim
n→∞

∫
T
fn(z)dz =

∫
T
f(z)dz = 0,

and by Morera’s Theorem 2.4.18, f is holomorphic.

Theorem 2.5.4: Uniform convergence of the derivative

Let (fn)
∞
n=0 be a sequence of holomorphic functions on Ω ⊂ C such that

fn → f uniformly on every compact set of Ω. Then f ′
n → f ′ uniformly on

compact sets of Ω.

Proof. Let z0 ∈ Ω and Dr(z0) ⊂ Ω. By assumption fn → f uniformly on Dr(z0).

For s > r such that Ds(z0) ⊂ Ω and let σ := (r + s)/2. For z ∈ Dr(z0) ⊂ Dσ(z0),

by Cauchy Integral Formula for derivatives 2.4.4 we have

f ′(z) =
1

2πi

∫
Cσ(z0)

f(w)

(w − z)2
dw.
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2.5 Sequences of holomorphic functions

Similarly we have

f ′
n(z) =

1

2πi

∫
Cσ(z0)

fn(w)

(w − z)2
dw.

We want to show that the latter integral converges to the first one. It holds that

∣∣f ′
n(z)− f(z)

∣∣ = ∣∣∣∣∣ 1

2πi

∫
Cσ(z0)

fn(w)− f(w)

(w − z)2
dw

∣∣∣∣∣
≤ 1

2π
· 2πσ sup

w∈Cσ(z0)

∣∣∣∣fn(w)− f(w)

(w − z)2

∣∣∣∣ .
In the integral above, w ∈ Cσ(z0) implies |w − z0| = σ, and z ∈ Dr(z0) implies

|z − z0| ≤ r. This leads to

|w − z| = |w − z0 + z0 − z| ≥
∣∣|w − z0| − |z − z0|

∣∣ ≥ σ − r.

So from the inequality above we get

∣∣f ′
n(z)− f(z)

∣∣ ≤ σ sup
w∈Cσ(z0)

∣∣∣∣fn(w)− f(w)

(w − z)2

∣∣∣∣
≤ σ

(σ − r)2
sup

w∈Cσ(z0)
|fn(w)− f(w)|︸ ︷︷ ︸

→0 as n→∞

.

This shows that f ′
n(z) → f ′(z) uniformly for z ∈ Dr(z0). Since any compact set is

contained in a finite union of such discs we get the result.

Remark. These theorems are often used to prove holomorphicity of functions

defined by infinite series. Let (fn)
∞
n=0 be a sequence of holomorphic functions.

Define

F (z) =
∞∑
n=0

fn(z)

and

SN =

N∑
n=0

fn(z)

the sequence partial sums. If (SN )∞n=0 converges uniformly on compact sets, then

limN→∞ SN = F is also holomorphic.

The following theorem is useful.
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2 Cauchy’s Theorem and Its Applications

Theorem 2.5.5: Weierstrass M. Test

Let fn : Ω → C be a sequence of functions and U ⊂ Ω a non-empty set.

Suppose there exists a sequence of real numbers Mn ≥ 0 such that

|fn(z)| ≤Mn

for all n ∈ N and z ∈ U , and that

∞∑
n=0

Mn <∞.

Then
∞∑
n=1

fn

converges absolutely and uniformly on U .

Proof. For each fixed z ∈ U , we have the inequality

|fn(z)| ≤Mn.

Since the series
∑∞

n=1Mn converges, by the comparison test, it follows that the

series
∞∑
n=1

|fn(z)|

also converges. Therefore, the series
∑∞

n=1 fn(z) converges absolutely for each z ∈ U .

Next, we show that the series
∑∞

n=1 fn(z) converges uniformly on U . To do this,

we use the Cauchy criterion for uniform convergence. Let ϵ > 0. Since
∑∞

n=1Mn

converges, there exists an integer N ≥ 1 such that for all p, q ≥ N ,

q∑
n=p

Mn < ϵ.

Now, for all z ∈ U and for all p, q ≥ N , we have∣∣∣∣∣
q∑

n=p

fn(z)

∣∣∣∣∣ ≤
q∑

n=p

|fn(z)| ≤
q∑

n=p

Mn.

Thus for all z ∈ U , we get ∣∣∣∣∣
q∑

n=p

fn(z)

∣∣∣∣∣ < ϵ.
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2.5 Sequences of holomorphic functions

This shows that the sequence of partial sums of
∑∞

n=1 fn(z) satisfies the Cauchy

criterion uniformly on U . Therefore, the series
∑∞

n=1 fn(z) converges uniformly on

U .

Corollary 2.5.6: Uniform convergence and series

Let

SN =
∞∑
n=1

fn(z).

If (SN (z))∞N=1 converges uniformly on a compact set then limn→∞ SN =∑∞
n=1 fN (z) is also holomorphic.

Example 2.5.7

For s ∈ C with s = σ + it and n ∈ N the function s 7→ ns := exp(s log n) is an

analytic function on C. It holds that

|ns| = |e(σ+it) logn| = eσ log(n) = nσ.

This leads to the Riemann ζ-function which we investigate below.

Proposition 2.5.8: Riemann ζ-function

The series

ζ(s) :=

∞∑
n=1

1

ns

converges absolutely and uniformly on every half plane Uδ := {s ∈ C : Re(s) ≥
1 + δ} with δ > 0 and is holomorphic in {s ∈ C : Re(s) > 1}.

Proof. For each δ > 0, if Re(s) = σ ≥ 1+δ > 1 then the series is uniformly bounded

by
∞∑
n=1

1

n1+δ
<∞.

Hence,

|ζ(s)| =

∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑
n=1

1

nσ

≤
∞∑
n=1

1

n1+δ
<∞.
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2 Cauchy’s Theorem and Its Applications

We know that
∞∑
n=1

1

ns

converges uniformly on every half plane Re s ≥ 1 + δ > 1 for all δ > 0. Now, let

SN (s) =

N∑
n=1

1

ns
.

For each N ∈ N, SN defines a holomorphic function on Re(s) > 1. Also, every com-

pact subset of Re(s) > 1 is contained in one of the half-planes Uδ. Combining these

two with the result that SN converges to ζ(s) uniformly on every Uδ (in particular

on every compact subset), we conclude that the limit ζ is also holomorphic.

Remark. The Riemann ζ-function given as an infinite sum converges for Re(s) >

1. The Riemann Hypothesis says that if ζ(s) = 0, then Re(s) = 1/2, given it is not

a trivial zero.

Example 2.5.9

For z ∈ H := {z ∈ C : Im z > 0} we define the (single-variable) Θ-function

Θ(z) :=
∑
n∈Z

e2πin
2z

= 1 + 2
∞∑
n=1

e2πin
2z.

We can consider

Θ4(z) =
∑
n1

∑
n2

∑
n3

∑
n4

e2πi(n
2
1+n2

2+n2
3+n2

4)z

=
∞∑

m=1

a(m)e2πimz,

where a(m) = #{(n1, . . . , n4) ∈ Z4 : n2
1 + n2

2 + n2
3 + n2

4 = m}. This can be used to

prove Lagrange’s Four-square Theorem.

We want to show that the Θ-function converges uniformly on every set of the from

Hδ := {z ∈ C : Im(z) ≥ δ} for δ > 0 and defines a holomorphic function on H.
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2.5 Sequences of holomorphic functions

Proof. Let z ∈ Hδ, z = x+ iy, y ≥ δ > 0. We then have∣∣∣e2πin2z
∣∣∣ = ∣∣∣e2πin2x

∣∣∣ ∣∣∣e−2πn2y
∣∣∣

= e−2πn2y ≤ e−2πny

for all n ∈ N. Since y ≥ δ,

e−2πy ≤ e−2πδ < 1,

we have ∣∣∣∑ e2πin
2z
∣∣∣ ≤∑ e−2πnδ <∞.

Hence
∑

e2πin
2z converges uniformly on Hδ. Since every compact set of H of con-

tained in Hδ for some δ > 0, the sum converges uniformly on compact sets and

hence Θ(z) is a holomorphic functoin on H.

There is a relation between

ζ(s)←→ Θ(z)

which is given by

π−s/2Γ(s/2)ζ(s) =
1

2

∫ ∞

0
(Θ(it)− 1)ts/2

dt

t
for Re(s) > 1.

One can also show that in fact∫ ∞

0
(Θ(it)− 1)ts/2

dt

t

makes sense also for every s ∈ C \ {0, 1}. This gives the analytic continuation of

ζ(s). The trivial zeros of ζ are at the negative integers, which correspond to places

where the Γ-function blows up but the integral has no singularity. Lecture 12

Many special functions of mathematics are defined using integrals of the form

f(z) =

∫ b

a
F (z, t)dt.

For example the Γ-function

Γ(z) := lim
M→∞

∫ M

1/M
e−ttz

dt

t
= lim

M→∞

∫ M

1/M
tz−1e−tdt.
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2 Cauchy’s Theorem and Its Applications

Theorem 2.5.10: Integral and holomorphicity

Let Ω ⊂ C be open and I = [a, b] ⊂ R, closed and bounded interval. Let

F : Ω× I → C be a function with the following properties:

1. F is continuous on Ω× I,

2. For each t0 ∈ I, the function ft0(z) = F (z, t0) is holomorphic.

Then the function

f(z) :=

∫ b

a
F (z, t)dt

is holomorphic on Ω.

Proof. The idea is to use Riemann sums to approximate the integral. Let’s consider

the standard Riemann sum

fn(z) =

(
b− a

n

) n−1∑
j=0

F

(
z, a+

(
b− a

n

)
j

)
.

We now have that fn(z) is a finite sum of holomorphic functions and hence holo-

morphic. We want to show that fn(z) converges uniformly on compact subsets of

Ω and then use Theorem 2.5.3. Let K be a compact subset, then F : K × I → C
is uniformly continuous, which means that for every ε > 0 there exists δ > 0 such

that for all (zi, ti) ∈ K × I, if |z1 − z2| < δ and |t1 − t2| < δ then

|F (z1, t1)− F (z2, t2)| <
ε

b− a
.

Now let N be large enough so that b−a
n < δ. We claim that for all z ∈ K we have

fn(z)− f(z) =
n−1∑
j=0

∫ a+(j+1) b−a
n

a+j b−a
n

[
F

(
z, a+ j

(
b− a

n

))
− F (z, t)

]
dt.

This is because by definition

f(z) =

∫ b

a
F (z, t)dt

=

∫ a+ b−a
n

a
F (z, t)dt+

∫ a+2 b−a
n

a+ b−a
n

F (z, t)dt+ · · ·+
∫ b

a+(n−1) b−a
n

F (z, t)dt,
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2.5 Sequences of holomorphic functions

and fn is defined by

fn(z) =

(
b− a

n

) n−1∑
j=0

F

(
z, a+ j

(
b− a

n

))

=
n−1∑
j=0

∫ a+(j+1) b−a
n

a+j b−a
n

F

(
z, a+ j

(
b− a

n

))
︸ ︷︷ ︸

independent of t

dt

We see that the integrals are independent from t. For t ∈
[
a+ j b−a

n , a+ (j + 1) b−a
n

]
.∣∣∣∣t− (a+ j

(
b− a

n

))∣∣∣∣ ≤ b− a

n
< δ

The other variable stays the same and satisfies 0 = |z − z| < δ. Hence∣∣∣∣F (z, a+ j

(
b− a

n

))
− F (z, t)

∣∣∣∣ > ε

b− a
.

Using uniform continuity of F it follows that

|fn(z)− f(z)| ≤ ε

b− a

n−1∑
j=0

b− a

n
= ε.

for all z ∈ K. Hence fn → f uniformly on K and f is holomorphic.

Remark. With more work, one can also show that

f ′(z) =

∫ b

a
F ′(z, t)dt ∀ z ∈ Ω.

Example 2.5.11

The J-Bessel function

Jn(z) :=
1

2π

∫ π

−π
eiz sin(t)e−intdt

is a holomorphic function.
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Chapter 3

Meromorphic Functions and the

Logarithm

Lecture 13

The goal is to extend Cauchy’s Theorem to functions with singularities. We will

first talk about singularities of a function that are isolated. We will see that there

are three types of singularities: we consider the functions

sin z

z
,
1

z
, and e1/z,

all of which have singularities. In the first case, the limit z → 0 is finite, so we can

extend the function analytically at 0, this is called a removable singularity. For the

second function, the limit z → 0 is unbounded, we say that is has a pole at 0. In

the third case, the behaviour of the function is more complicated and 0 is called an

essential singularity.

We will also see that if z = z0 is a pole, so a singularity of type

1

(z − z0)k
,

then in fact in a neighbourhood of z0 f will look like

f(z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
+G(z),

where G is a holomorphic function in D∗
r(z0). a−1 is called the residue of f at z = z0.

This will lead us eventually to the Residue Theorem.

56



3.1 Singularities and poles

3.1 Singularities and poles

Definition 3.1.1: Isolated Singularity

Let z0 ∈ C, z0 is called a (possible) isolated singularity of a function f if

there exists r > 0 such that in the punctured disc D∗
r(z0) = Dr(z0) \ {z0}, f

is holomorphic.

Example 3.1.2

Let f(z) = tan 1
z has singularities at 2

π ,
2
3π ,

2
5π , . . . , 0. Note that 0 is not an isolated

singularity of f , the others are isolated. We will be only interested in isolated

singularities.

Definition 3.1.3: Removable Singularity

An isolated singularity z0 of a function f ∈ H(Ω \ {z0} is called removable if

f is holomorphically extendable to all of Ω, i.e., there exists F : Ω→ C such

that F (z) = f(z) for all z ∈ Ω \ {z0}.

We have the following theorem.

Theorem 3.1.4: Riemann’s Continuation Theorem

Let z0 ∈ Ω ⊂ C, then the following for a function f ∈ H(Ω \ {z0}) are

equivalent.

1. f is holomorphically extendable to Ω.

2. f is continuously extendable to Ω.

3. f is bounded in a deleted neighbourhood of z0, that is, there exists r > 0

so that f is bounded in D∗
r(z0).

4. limz→z0(z − z0)f(z) = 0.

Proof. Notice that the implications 1 =⇒ 2 =⇒ 3 =⇒ 4 are elementary. We are

left to show that 4 =⇒ 1. Introduce the function

h(z) :=

zf(z) z ̸= 0

0 z = 0

and set k(z) = zh(z). By assumption 4. h and k are holomorphic in C \ {0} and

continuous in the whole complex plane C. Since k(z) = k(0) + zh(z) we deduce

that k is complex differentiable in zero and hence holomorphic in C. By Taylor

representation of holomorphic functions, k(z) = a0+a1z+a2z
2+ . . . for coefficients
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3 Meromorphic Functions and the Logarithm

a0, a1, · · · ∈ C. Since k(0) = 0 and k′(0) = 0 we deduce that k(z) = a2z
2 + a3z

3 +

· · · = z2(a2 + a3z + a4z
2 + . . . ). Now, recalling that k(z) = z2f(z) for z ̸= 0 we

deduce that g(z) := a2 + a3z + a4z
2 + . . . is indeed an holomorphic extension of f

in C.

Remark. This means that when we assumed in Cauchy’s Theorem that the

function was holomorphic except at one point and continuous everywhere is not

really a weaker assumption, because we can extend the function analytically at this

point and integrate the new holomorphic function.

As a corollary we have:

Theorem 3.1.5: Riemann’s Theorem on removable singularities

Suppose f is holomorphic in an open set Ω except possibly at z0 ∈ Ω. If f is

bounded in D∗
r(z0) for some Dr(z0) ⊂ Ω, then z0 is a removable singularity

of f .

Proof. This is just 3. =⇒ 1. of Theorem 3.1.4 (Riemann’s Continuation Theorem).

Example 3.1.6

f(z) = sin z
z with z0 = 0. Using 4. from Theorem 3.1.4 (Riemann’s Continuation

Theorem) we have

lim
z→0

zf(z) = lim
z→0

sin z = 0.

Also note limz→0 f(z) = limz→0
sin z
z = 1. Or, note that

sin z =
∞∑
n=0

(−1)n z2n+1

(2n+ 1)!

for all z ∈ C and hence

sin z

z
=

∞∑
n=0

(−1)n z2n

(2n+ 1)!
.

The power series above gives the holomorphic extension of sin z
z .

If f does not have a removable singularity at z0, then f is not bounded near z0. We

can ask whether its unboundedness is similar to 1
(z−z0)n

for some n? In other words,
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3.1 Singularities and poles

we can ask whether

(z − z0)
nf(z)

is bounded near z0 for sufficiently large n?

Definition 3.1.7: Pole, order of pole and simple poles

If such an n ∈ N exists, then z0 is called a pole of f and the natural number

m = min{n ∈ N : (z − z0)
nf(z) is bounded near z0} is called the order of the

pole of f at z0. Poles of first order are called simple poles.

Example 3.1.8

For example
1

(z − z0)m

has a pole of order m at z = z0.

Recall from proposition 2.4.10, f is holomorphic in a connected open set Ω, f has a

zero at z0 ∈ Ω. Then there exists r > 0 such that Dr(z0) ⊂ Ω, g ∈ H(Dr(z0)), and

a unique n such that

f(z) = (z − z0)
ng(z)

for all z ∈ Dr(z0) with g(z0) ̸= 0.

Theorem 3.1.9:

For m ∈ N with m ≥ 1 and f ∈ H(Ω \ {z0}), the following are equivalent.

1. f has a pole of order m at z0.

2. There exists r > 0 and g ∈ H(Dr(z0)) such that g(z0) ̸= 0 and f(z) =

(z − z0)
−mg(z) for all z ∈ D∗

r(z0).

3. There exists r > 0 such that Dr(z0) ⊂ Ω and h ∈ H(Dr(z0)) such that

h(z) ̸= 0 for all z ∈ D∗
r(z0), h has a zero of order m at z0 with

f(z) =
1

h(z)

for all z ∈ D∗
r(z0).

Proof. 1. =⇒ 2. f having a pole of order m at z0 means that (z − z0)
mf(z) is

bounded near z0, and m is minimal. Theorem 3.1.4 (Riemann’s Theorem) says that

there exists g ∈ H(Dr(z0)) such that g(z) = (z−z0)
mf(z) whenever z ̸= z0. If g(z0)

were zero, then it would imply by the Proposition 17 that g(z) = (z−z0)h(z) where
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3 Meromorphic Functions and the Logarithm

h is holomorphic in Dr(z). Consequently this will give

h(z) = (z − z0)
m−1f(z)

is bounded near z0, which will contradict the minimality of m. Hence g(z0) ̸= 0. It

follows that

f(z) = (z − z0)
−mg(z)

for z ∈ D∗
r(z0) and g ∈ H(Dr(z0)) with g(z0) ̸= 0.

2. =⇒ 3. Suppose there exists g ∈ H(Dr(z0)) such that g(z0) ̸= 0, for which

f(z) = (z − z0)
−mg(z) for all z ∈ D∗

r(z0). Let

h(z) =
(z − z0)

m

g(z)

for all z ∈ Dr(z0). If necessary, we move to a smaller disk in which g does not

vanish. Then, h(z) ̸= 0 for all z ∈ D∗
r(z0) and h ∈ H(Dr(z0)). We also get that

1

h(z)
= g(z)(z − z0)

−m = f(z)

for all z ∈ D∗
r(z0). Note that h has a zero of order m at z0 because

h(z) = (z − z0)
m 1

g(z)

and g is a non-vanishing holomorphic function in Dr(z0).

3. =⇒ 1. Suppose there exists r > 0 such that Dr(z0) ⊂ Ω and h ∈ H(Dr(z0))

such that h(z) ̸= 0 for all z ∈ D∗
r(z0) h(z) has a zero of order m at z0 and

f(z)) =
1

h(z)
∀ z ∈ D∗

r(z0).

Since h has a zero of order m at z0, there exists g ∈ H(Dr(z0)) such that

h(z) = (z − z0)
mg(z)

and there exists s > 0 such that g(z) ̸= 0 for all z ∈ Ds(z0) ⊂ Dr(z0). Since g is

holomorph and non vanishing 1/g is holomorph in Ds(z0). But then

f(z) =
1

h(z)
= (z − z0)

m 1

g(z)
∀ z ∈ D∗

s(z0)
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3.1 Singularities and poles

would imply that z− zm0 (z) = 1
g(z) is holomorphic on D∗

s(z0) and has a holomorphic

extension 1/g(z) in Ds(z0) (1/g is holomorphic onnDs(z0) since g ̸= 0 on Ds(z0)).

By Riemann’s extendability theorem (z − z0)
mf(z) is bounded in a neighbourhood

of z0. Moreover

(z − z0)
m−1f(z) =

(
1

g(z)

)(
1

z − z0

)
is not bounded since

1

g(z0)
̸= 0 and

1

z − z0
→∞ as z → z0.

Hence m is minimal and f has a pole of order m at z0.

Example 3.1.10

1. f(z) = 1
ez−1 has a pole of order 1 at z = 0. We can see this using

1

f(z)
= ez − 1 = z

(
1 +

z

2!
+ · · ·

)
.

1/f has a zero of order 1, hence f has a pole of order 1. f also has simple

poles at z = 2nπi.

2. f(z) = z
z2−1

has a zero at z = 0 and a pole of order 1 at z = ±1.

f(z) =
1

z − 1

(
z

z + 1

)
= (z − 1)−1g(z)

We can do the same for z + 1.

Theorem 3.1.11: Expansion of f at a pole

If f has a pole of order n at z = z0, then there exists r > 0 such that

f(z) =
a−n

(z − z0)n
+

a−(n−1)

(z − z0)n−1
+ · · ·+ a−1

z − z0
+G(z)

for all z ∈ D∗
r(z0), where G ∈ H(Dr(z0)).

Proof. f has a pole of order n at z0, so f(z) = (z− zn)
−ng(z) for all z ∈ D∗

r(z0) and

g ∈ H(Dr(z0)). We expand g(z) in a power series

g(z) =

∞∑
k=0

g(k)(z0)
(z − z0)

k

k!
.
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3 Meromorphic Functions and the Logarithm

For z ∈ D∗
r(z0),

f(z) =
g(z)

(z − z0)n

=
1

(z − z0)n

(
g(z0) + g′(z0)(z − z0) + · · ·+ g(n)(z0)

(z − z0)
n

n!
+ · · ·

)
=

g(z0)

(z − z0)n
+

g′(z0)

(z − z0)n−1
+ · · ·+ g(n−1)(z0)

(n− 1)!(z − z0)

+

(
g(n)(z0)

1

n!
+ g(n+1)(z0)

z − z0
(n+ 1)!

+ · · ·
)

︸ ︷︷ ︸
=G(z)

.

Remark. In the expansion above, the part

a−n

(z − z0)n
+

a−(n−1)

(z − z0)n−1
+ · · ·+ a−1

z − z0

is called the principle part and a−1 = resz0 f the residue of f at z0. Lecture 14

Remark. If f has a pole of order 1 (f(z) = a−1

z−z0
+G(z)), then

lim
z→z0

(z − z0)f(z) = a−1 = resz0 f.

Conversely, if limz→z0(z−z0)f(z) exists then (z−z0)f(z) is bounded in some neigh-

bourhood of z0. Hence z0 is a pole of f(z) of order at most 1. If the limit is actually

0, z0 is a removable singularity.

More generally, we have

Theorem 3.1.12: Method to Calculate resz0

If f has a pole of order n at z0, then

resz0 f = lim
z→z0

1

(n− 1)!

dn−1

dzn−1

(
(z − z0)

nf(z)
)
.

Proof. We have

f(z) = Pz0(z) +G(z)

and

(z − z0)
nf(z) = a−n + a−(n−1) + · · ·+ a−1(z − z0)

n−1 + (z − z0)
nG(z).
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3.1 Singularities and poles

Example 3.1.13

1.

resi
1

z2 + 1

lim
z→i

(z − i)
1

z2 + 1
= lim

z→i

1

z + i
=

1

2i
.

2.

f(z) =
1

(z2 + 1)2

resi f = lim
z→i

d

dz

(z − i)2

(z2 + i)2
= lim

z→i

d

dz

1

(z + 1)2
=

1

4i
.

Lemma 3.1.14: Residue of f/g

If f, g are holomorphic at z0 and g has a simple zero at z0. Then f/g has a

simple pole at z0 and resz0 f/g = f(z0)/g
′(z0).

Proof. If g has a zero of then

g(z) = (z − z0)g̃(z)

for some neighbourhood Dr(z0) with g̃(z) ̸= 0 in Dr(z0). Then

f

g
= (z − z0)

−1 f(z)

g̃(z)

in D∗
r(z0). Hence f/g has a pole of order 1 at z0. To calculate the residue we use

Theorem 3.1.12

a−1 = resz0
f

g
= lim

z→z0
(z − z0)

f(z)

g(z)

= lim
z→z0

f(z)
(z − z0)

g(z)− g(z0)

=
f(z0)

g′(z0)
.
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3 Meromorphic Functions and the Logarithm

Example 3.1.15

resi
z3

z2 + 1
= −1

2

Remark. If f(z) = Pz0(z) + G(z), where Pz0 is the principle part and G(z) holo-

morphic, for all z ∈ D∗
r(z0). Let C be a circle centred at z0 and contained in Dr(z0).

Then ∫
C
Pz0(z)dz =

∫
C

a−n

(z − z0)n
+ · · ·+ a−1

z − z0
dz = a−12πi.

This is because ∫
C

dz

z − z0
= 2πi

and ∫
C

1

(z − z0)n
dz = 0

for n > 1 using Corollary 2.4.4 (Cauchy Integral Formula for derivatives). The

integral of G vanishes due to Cauchy’s Theorem as G is holomorphic.

3.2 The Residue Formula

Theorem 3.2.1: Residue Formula

Let Ω ⊂ C open and F = {z1, . . . , zn}. Suppose f ∈ H(Ω \F ) except for poles

in F . Let γ be any circle contained in Ω, counter-clockwise oriented such that

γ ∩ F = ∅. Let D be the open disc bounded by γ. Then∫
γ
f(z)dz = 2πi

∑
zi∈F∩D

reszi f.

Remark. Only the poles inside the curve do contribute for the residue theorem,

not all poles in Ω.

Example 3.2.2

Let γ be a circle |z| = 3. We want to evaluate∫
γ

dz

(z2 + 1)2
.

The function has to double poles i,−i which are both inside the circle. According
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3.2 The Residue Formula

to the residue theorem 3.2.1 we get∫
γ

dz

(z2 + 1)2
= 2πi(resi f + res−i f)

Where resi =
1
4i , res−i =

−1
4i (Lemma 3.1.14), so we finally obtain∫

γ

dz

(z2 + 1)2
= 0.

Lecture 15

Mock exam. Lecture 16

Mock exam discussion.

In the following we give the proof of residue formula. Lecture 17

Proof of Theorem 3.2.1. Let’s first assume f is holomorphic in an open set Ω con-

taining a circle and its interior except for a single pole at z0, inside γ. By theorem

3.1.11

f(z) = Pz0(z) +G(z) ∀ z ∈ D∗
r(z0),

where G(z) is holomorphic in a neighbourhood Dr(z0). The principle part is given

by

Pz0(z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
.

The function f(z)−Pz0(z) extends holomorphically to Ω in the following way. Note

that Pz0(z) is holomorphic in all C \ {z0} and let

g(z) =

f(z)− Pz0(z) z ∈ Ω \ {z0}

G(z) z ∈ Dr(z0).

Then g(z) is the holomorphic extension of f(z)− Pz0(z). Hence∫
γ
f(z)− Pz0(z)dz = 0,

which means ∫
γ
f(z)dz =

∫
γ
Pz0(z)dz

=

∫
γ

(
a−n

(z − z0)n
+ · · ·+ a−1

z − z0

)
dz.

Recall Theorem 2.4.1 (Cauchy Integral Formula), for C = ∂D, D ⊂ Ω, and F ∈
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3 Meromorphic Functions and the Logarithm

H(Ω), for any z ∈ D we have

F (n)(z) =
n!

2πi

∫
C

F (w)

(w − z)n+1
dw.

Applying the formula with F = 1, we see

∫
C

dz

(z − z0)n
= 2πi

dn−1

dzn−1
(1) =

0 if n− 1 ≥ 1

2πi if n = 1.

For the general case we assume f is holomorphic in Ω except for poles F = {z0, . . . , zn}.
For each zi, let Pzi(z) be the principle part of f at z = zi. Define

g(z) = f(z)−
∑
zi∈F

Pzi(z).

If z /∈ F , then g ∈ H(Ω \F ) and in fact g can be extended holomorphically to all of

Ω. To see this, let z0 ∈ F and r > 0 such that Dr(z0) ⊂ D,D∗
r(z0) ∩ F = ∅. Then,

f(z)− Pz0(z) is holomorphic in D∗
r(z0) and for z ∈ D∗

r(z0),

g(z) =
∑
zi∈F
zi ̸=z0

Pzi(z) + (f(z)− Pz0(z)).

Now the first sum is holomorphic in Dr(z0) and f(z) − Pz0(z) = G(z) extends

holomorphically to Dr(z0). Hence g(z) has an extension to (Ω \ F ) ∪ {z0} = Ω \
{z1, . . . , zn}. We can do this for each zi to get an extension to all of Ω. By Cauchy’s

Theorem 2.2.5 ∫
γ
g(z) = 0,

hence ∫
γ
f(z)dz =

∑
zi

∫
γ
Pz0(z)dz = 2πi

∑
zi∈D∩F

reszi f.

Remark.

1. Another way to prove this is to use a “keyhole” contour . Inside Γε,δ f is

holomorphic, so by Cauchy’s Theorem 2.2.5∫
Γε,δ

fdz = 0.
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3.2 The Residue Formula

We then make the width of the corridor δ → 0 and use continuity of f to show

that the two sides cancel. The remaining part becomes two circles, the large

circle γ and the small circle Cε.∫
γ
f(z)dz +

∫
Cε

f(z)dz︸ ︷︷ ︸
−2πi resz0 (f)

= 0

This gives the result.

Figure 3.1: Keyhole contour 1

2. The best way to understand Cauchy Integral Formula 2.4.1, Cauchy’s Theorem

2.2.5 or residue formula is using homotopy. If one path can be continuously

deformed into another path while staying in the region where f is holomorphic,

the integrals over these two paths are equal.

Remark. If γ is not a circle but a rectangle, polygon or any curve which has a

parametrisation

γ : [a, b] −→ C \ {z0}

t 7−→ z0 + r(t)eiθ(t)

for some C1 functions r, θ : [a, b]→ R satisfying r(t) > 0, r(a) = r(b), and θ(a) = 0,

θ(b) = 2π. It holds that

r(t) = |γ(t)− z0|
1This figure was created by Joshua Dreier. His personal lecture notes and more brilliant diagrams

you will find under his personal webpage [1].
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and

eiθ(t) =
γ(t)− z0
|γ(t)− z0|

.

Then γ′(t) = r′(t)eiθ(t) + r(t)iθ′(t)eiθ(t), hence

1

2πi

∫
γ

dz

z − z0
=

∫ b

a

γ′(t)

r(t)eiθ(t)
dt

=

∫ b

a

r′(t)

r(t)︸ ︷︷ ︸
=0

dt+ i

∫ b

a
θ′(t)dt︸ ︷︷ ︸
2πi

= 2πi.

Example 3.2.3

Show that ∫ ∞

−∞

dx

1 + x2
= π.

Idea: To choose a function f and a closed contour γ so that part of the contour

leads to the real integral.

In this particular case we guess

f(z) =
1

1 + z2

and we choose the path along the boundary of a semicircle with radius R.

Re

Im

ΓR

R−R

γR

i

For fixed R we get ∫
γR

f(z)dz = 2πi resi f = π.

Hence,

π =

∫
γR

f(z)dz =

∫ R

−R

1

1 + x2
dx+

∫
ΓR

dz

1 + z2
,

68



3.2 The Residue Formula

where ΓR is the curved part of γR. We take the limit R→∞ to get

π =

∫ ∞

−∞

dx

1 + x2
+ lim

R→∞

∫
ΓR

dz

1 + z2
.

On ΓR, |z2 + 1| ≥ R2 − 1 implies that
∣∣∣ 1
z2+1

≤ 1
R2−1

∣∣∣, hence
∣∣∣∣∫

ΓR

1

1 + z2
dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞.

Example 3.2.4

The same technique works well to evaluate integrals of the form∫ ∞

−∞

P (x)

Q(x)
dx

where P,Q ∈ C[x] and Q has no zeros on the real line. We also require degQ ≥
degP + 2, because this is needed to show that∫

ΓR

P (z)

Q(z)
dz → 0 as R→ 0,

which appears in ∫
γR

P (z)

Q(z)
dz =

∫ R

−R

P (x)

Q(x)
dx+

∫
ΓR

P (z)

Q(z)
dz.

To show exactly why we need this, let degQ = n and degP = m. On the semicircle

ΓR of radius R, for large R we have that |Q(z)| > B|z|n for some B, so we can give

bound ∣∣∣∣P (z)

Q(z)

∣∣∣∣ < C
Rm

Rn
= CRm−n.

For the integral we have∣∣∣∣∫
ΓR

P (z)

Q(z)
dz

∣∣∣∣ < CRm−nπR < C
1

Rm−n−1
.

To obtain ∫
ΓR

f(z)dz → 0 as R→∞,

we need n−m− 1 > 0, which is equivalent to n ≥ m+ 2.
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Example 3.2.5

Show that ∫ ∞

−∞

dx

(x2 + a2)2
=

π

2a3
.

Example 3.2.6

Some contour can by used to evaluate the integrals of rational functions multiplied

with sin(ax) or cos(ax), for example∫ ∞

−∞

P (x)

Q(x)
cos(ax)dx.

As f(z) we take

f(z) =
P (z)

Q(z)
eiaz

and not
P (z)

Q(z)
cos(az)

because cos(az) behaves “badly” on the upper half-plane.2 On the imaginary axis

for example

cos(it) =
et + e−t

2
= cosh(t)

grows exponentially as t→∞, whereas

∣∣eiz∣∣ = ∣∣∣ei(x+iy)
∣∣∣ = e−y ≤ 1

is bounded by 1 for z ∈ H+.

Example 3.2.7

Show that ∫ ∞

−∞

cos ax

x2 + 1
dx = πe−a.

Let

f(z) =
eiaz

z2 + 1

then it holds that

resi f =
e−a

2i
.

2Note that cos z + i sin z = eiz is not the real-imaginary decomposition of eiz. Nonetheless eiz

is still bounded for Im(z) > 0 because cos z and sin z cancel each other out.
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3.2 The Residue Formula

So (choosing γR as in Example 3.2.3) we get∫
γR

f(z)dz = πe−a.

We bound the integrand ∣∣∣∣ eiaz

z2 + 1

∣∣∣∣ ≤ 1

R2 − 1

on ΓR and hence ∣∣∣∣∫
ΓR

f(z)dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞.

Taking real parts on both sides gives us∫ ∞

−∞

eiaz

x2 + 1
dx = πe−a.

Example 3.2.8

An other class of integrals that we can solve using the residue theorem is∫ 2π

0

P (cos t, sin t)

Q(cos t, sin t)
dt,

where P,Q are polynomials and Q(x, y) ̸= 0 for all x, y ∈ R with x2 + y2 + 1. A

specific example of this is ∫ 2π

0

dθ

a+ cos θ
, a > 1.

On the unit circle z = eiθ we have

dz

iz
= dθ.

Also note that cos can be written as

cos θ =
eiθ + e−iθ

2
=

z + 1/z

2
.
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3 Meromorphic Functions and the Logarithm

Hence we can write a+ cos θ = a+ 1
2(z + 1/z), which gives

∫ 2π

0

dθ

a+ cos θ
=

∫
|z|=1

1

a+ 1
2

(
z + 1

z

) dz
iz

=
2

i

∫
|z|=1

dz

z2 + 2az + 1
.

A minor computation shows that the poles are at −a ±
√
a2 − 1, and both points

are inside the unit circle. This gives us the final result∫
|z=1|

dθ

a+ cos θ
= 2πi resz0 f =

2π√
a2 − 1

.

Lecture 18

Proposition 3.2.9:

Suppose f has an isolated singularity at z0. Then z0 is a pole of f if an only

if the limit limz→z0 |f(z)| =∞.

Proof. If f(z) has a pole of order k ≥ 1 at z0, then there exists r > 0 such that

f(z) = g(z)(z − z0)
−k

on D∗
r(z0), where g ∈ H(Dr(z0)) and g(z0) ̸= 0. This gives us

lim
z→z0

|f(z)| = lim
z→z0

|g(z)||z − z0|−k =∞,

since limz→z0 g(z) = g(z0) is finite. Conversely, if limz→z0 |f(z)| = ∞. Find r > 0

such that |f(z)| ≥ 1 ∀ z ∈ D∗
r(z0). In particular f(z) ̸= 0 in D∗

r(z0). Then

h(z) =
1

f(z)

for z ∈ D∗
r(z0) is holomorphic in D∗

r(z0) and |h(z)| ≤ 1. Hence by Riemann’s

Theorem 3.1.4 h(z) extends to a holomorphic function in Dr(z), by defining h(z0) =

limz→z0 1/f(z) = 0. If N is the order of the zero of h at z = z0, then f(z) has a

pole of order N at z0.

We have seen that if z0 is removable then limz→z0 f(z) exists and finite. If z0 is

a pole the limz→z0 |f(z)| = ∞. Recall that if z0 is an isolated singularity, then z0

is called an essential singularity if it is neither a pole nor removable. For example

e1/z has an essential singularity at z = 0. Note that e1/x → 0 as x → 0 along the
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3.3 Meromorphic functions

negative reals and e1/x →∞ as x→ 0 along the positive reals.

Theorem 3.2.10: Casorati-Weierstrass

Suppose f is holomorphic in D∗
r(z0) and has an essential singularity at z0.

Then the image of D∗
r(z0) under f is dense in C.

Proof. We want to show that for every w ∈ C and every ε > 0 there exists z ∈ D∗
r(z0)

such that |f(z) − w| ≤ ε. We argue by contradiction. Assume that this does not

hold, then we show that z0 is either removable or a pole. Assume on the contrary

that there exists w0 ∈ C and δ > 0 such that for all z ∈ D∗
r(z0),

|f(z)− w0| ≥ δ > 0.

Let

g(z) :=
1

f(z)− w0
,

with z ∈ D∗
r(z0). g(z) is bounded by 1/δ in D∗

r(z0), hence by Riemann’s Theo-

rem there is a holomorphic extension of g to Dr(z0), and in particular, the limit

limz→z0 g(z) exists. Since |f(z) − w0| ≥ δ and by definition of g, it is zero free in

D∗
r(z0). Hence its reciprocal has an isolated singularity in Dr(z0). This singularity

of 1/g is either a pole or removable depending on whether limz→z0 g(z) = 0 or not.

In particular

f(z) = w0 +
1

g

has at most a pole at z0, which contradicts the assumption that z0 is an essential

singularity.

Remark. There is another theorem of Picard (1879) that states that if f ∈
H(D∗

r(z0)) and has an essential singularity at z0. Then C \ f(D∗
r(z0)) contains

at most one point. This exceptional point can exist! For instance exp(1/z) never

takes the value 0.

3.3 Meromorphic functions

We now look at functions whose singularities are poles. Since around a pole z0,

limz→z0 |f(z)| =∞, we might want to add the “infinity” to C.
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3 Meromorphic Functions and the Logarithm

Definition 3.3.1: Extended complex plane

Define Ĉ := C ∪ {∞}, where ∞ is an ideal point at infinity and is unsigned.

Ĉ is called the extended complex plane. We can supplement the rules in C
by

1. ∞± z = z ±∞ =∞.

2. ∞ · z = z · ∞ =∞
3. z/∞ = 0

4. z/0 =∞
The expressions ∞±∞, ∞/∞, 0/0, 0 · ∞ are not assigned a meaning in Ĉ.
A sequence (zn)

∞
n=0 ⊂ C converges to ∞ if limn→∞ |zn| = ∞. Similarly we

say limz→z0 f(z) =∞ if limz→z0 |f(z)| =∞.

Lecture 19

Definition 3.3.2: Meromorphic functions

Let Ω be an open subset of C. f : C → Ĉ is called meromorphic on Ω if the

following the conditions are satisfied.

1. The set Sf = {z ∈ Ω : f(z) =∞} has no limit points in Ω.

2. The points in Sf are poles of f .

3. The restriction f |Ω\Sf
is holomorphic.

LetM(Ω) be the set of all meromorphic functions on Ω.

Example 3.3.3

1. Let P (z), Q(z) ∈ C[z] with no common zeros. Then f(z) = P (z)/Q(z) ∈
M(C), where we let

f(z) =

P (z)/Q(z) Q(z) ̸= 0

∞ Q(z) = 0.

In this case Sf is the set of zeros of Q.

2. f(z) = cotπz = cosπz
sinπz then f is meromorphic in C and Sf = Z.

3. f(z) = e1/z/(z2 − 1) is meromorphic for C \ {0}, gut is not meromorphic for

C, because it has an essential singularity at 0.

Now we want to investigate more properties of meromorphic functions. To begin

with, we consider the following situation. If we have two functions f, g ∈M(Ω) with

pole sets Sf , Sg, then (f+g)(z) = f(z)+g(z) is z ∈ Ω\(Sf∪Sg). If z0 ∈ Sf∪Sg then
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3.3 Meromorphic functions

we can write f(z) = Pf (z)+ f̃(z),∀ z ∈ D∗
r(z0), f̃ ∈ H(Dr(z0)), g(z) = Pg(z)+ g̃(z).3

Then

(f + g)(z) = Pf (z) + Pg(z) + f̃(z) + g̃(z).

This shows that f + g ∈M(Ω), where Sf+g ⊂ Sf ∪ Sg.

Proposition 3.3.4:

Let Ω ⊂ C open, then

1. M(Ω) ⊇ H(Ω).
2. If f, g ∈M(Ω), then so is af + bg ∈M(Ω) with a, b ∈ C. HenceM(Ω)

is a vector space.

3. f, g ∈ M(Ω), z0 ∈ Sf ∪ Sg. Let f = Pf + f̃ and g = Pg + g̃, with

f̃ , g̃ ∈ H(Ω). Then

(fg) = (Pf + f̃)(Pg + g̃) = Pfg +G,

where G ∈ H(Ω).
4. If 0 ̸≡ f ∈ M(Ω),Ω connected and the zeros of f do not have a limit

point in Ω, then 1/f ∈M(Ω).

Proof. 1. Obvious but note we identified a holomorphic function f : Ω→ C with

the corresponding function f̃ : Ω→ Ĉ where f̃ = i ◦ f, i : C ↪→ Ĉ.

2. The same argument for f + g works with af + bg.

3. Let f = Pf + f̃ , g = Pg + g̃. Let z0 ∈ Sf ∪ Sg then

fg = (Pf + f̃)(PG + g̃)

= Pfg +G

where Pfg is a linear combination and G is holomorphic in Dr(z0). Now

(consider example 3.3.5)

fg =

( ∞∑
k=−n

ak(z − z0)
k

)( ∞∑
ℓ=−m

bℓ(z − z0)
ℓ

)

=

∞∑
N=−(n+m)

 ∑
k,ℓ

k+ℓ=N

akbN−ℓ

 (z − z0)
N .

3If z0 ∈ Sf but not Sg, g if holomorphic in a neighbourhood if z0 and the argument still applies.
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3 Meromorphic Functions and the Logarithm

Similar to f + g we can define

fg =

f(z)g(z) if z ∈ Ω \ (Sf ∪ Sg)

∞ if z ∈ (Sf ∪ Sg).

then fg is meromorphic inM(Ω) with Sfg ⊆ Sf ∪ Sg.

4. If f ∈ M(Ω). If z0 ∈ Ω \ Sf and f(z0) ̸= 0 then 1/f is holomorphic at z0. If

z0 ∈ Ω \ Sf and f(z0) = 0 then 1/f has a pole of order k = order of zero of f

at z0. If z0 ∈ Sf then ∣∣∣∣ 1

f(z)

∣∣∣∣ −→z→z0
0

hence 1/f has a removable singularity at z0. So if zeroes of f has no limit point

in Ω then the poles of 1/f have no limit point in Ω and hence 1/f ∈M(Ω).

Example 3.3.5

f =
a−1

z − z0
+

∞∑
n=0

an(z − z0)
n

g =
b−2

(z − z0)2
+

b−1

z − z0
+
∑

bn(z − z0)

Then

fg =
b−2a−1

(z − z0)3
+

b2a0 + b−1a−1

(z − z0)2
+

a−1b0 + a0b−1 + b−2a1
z − z0

+G.

Recall from Theorem 2.4.15 that if f : Ω → C, Ω connected, and f ∈ H(Ω), then
the zeros of f have no limit point in Ω.

Proposition 3.3.6:

If Ω open and connected, 0 ̸≡ f ∈ M(Ω), let Z := {z ∈ Ω : f(z) = 0}, then
Z has no limit point in Ω.

Proof. Assume on the contrary there exists (zn)n ⊂ Z , such that limn→∞ zn = b ∈
Ω and f(zn) = 0 for all zn. Let Sf = poles of f . Then Ω \ Sf is also connected. By

theorem 2.4.15, the limit point b /∈ Ω \ Sf . But now b /∈ Sf either, because if b is a

pole of f ,

lim
z→b

f(z) =∞,
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3.3 Meromorphic functions

i.e., |f(z)| > 0 with |z − b| < ε for some ε > 0. But this contradicts that zn → b,

i.e., |zn − b| < ε for n > n0 and f(zn) = 0.

Remark. Let f ∈ M(Ω) z0 a pole of f . Then there exists r > 0 such that

D∗
r(z0) ∩ Sf = 0. If the order of pole at z0 is k then we can write f as

f(z) = (z − z0)
−kg(z), g(z0) ̸= 0, g(z) ∈ H(Dr(z0)).

We see that locally we can write a meromorphic function as the quotient of holo-

morphic functions. It is non-trivial but true that if Ω is connected then we can do

this globally,

M(Ω) =

{
f(z)

g(z)
: f, g ∈ H(Ω), g ̸≡ 0

}
.

Remark. This is the analogue of constructions of Q as field of fractions of the

integral domain Z. Recall H(Ω) has no zero devisors if Ω is connected.

Definition 3.3.7: Order for meromorphic functions

Let Ω ⊂ C open, z0 ∈ Ω, f ∈M(Ω), f ̸≡ 0. Define the valuation of f at z0 or

the order of f at z0, denoted ordz0 f , νz0f to be the integer k ∈ Z such that

1. If z0 is not a pole of f , i.e. f(z0) ̸= ∞, then k ≥ 0 is the order of zero

of f at z0.

2. If f(z0) = ∞, i.e., z0 is a pole of f , then k ≤ −1 is minus the order of

pole of f .

I.e. if ordz0 f > 0 then z0 is a zero, if ordz0 f < 0 then z0 is a pole and if ordz0 f = 0

then f(z0) ̸= 0, f(z0) ̸=∞.

Proposition 3.3.8:

If f ∈M(Ω), f ̸≡ 0, z0 ∈ Ω.

1. k = ordz0 f ⇔ there exists r > 0 and h ∈ H(Dr(z0)) such that h(z0) ̸= 0

and f(z) = (z − z0)
kh(z).

2. ordz0(fg) = ordz0 f + ordz0 g.

3. If f + g ̸= 0, then ordz0(f + g) ≥ min{ordz0 f, ordz0 g}.

Example 3.3.9

f(z) =
z

(ez − 1)2
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3 Meromorphic Functions and the Logarithm

z has a zero of order 1 at z = 0, ez − 1 has zero of order 2 at z = 0, ez − 1 has zero

of order 2 at z = 2πin, n ̸= 0.

ord0 f = ord0 z − ord0(e
z − 1)2 = 1− 2 = −1.

So f has a pole of order 1 at z = 0.

ord2πin f = ord2πin z − ord2πin(e
z − 1)2

f has poles or order 2 at z = 2πin.

Remark. Ĉ = C ∪ {∞} and Riemann sphere. Let S2 = {(x1, x2, x3) ∈ R3 :

x21+x22+x23 = 1} ⊂ R3 be the 2-sphere. We identify C with the plane (x1, x2) sitting

in R3. Let N = (0, 0, 1) be the north pole. Define Π : S2 \ {N} → C as follows. For

p ∈ S2, p ̸= N , let Π(p) be the intersection of C with the ray that starts at N and

passes through p. Explicitly

Π(p) = Π(x1, x2, x3)

=

(
x1

1− x3
,

x2
1− x3

, 0

)
=:

x1
1− x3

+
x2

1− x3
i ∈ C

Note the equation of the ray that starts at N and goes through p is

N + t(p−N)

for t ≥ 0 and

Π(p) = N + t0(p−N)

where t0 is the unique real number so that

(0, 0, 1) + t0(x1, x2, x3 − 1) = (y1, y2, 0)

for some suitable y1, y2 ∈ R. Defining Π(n) =∞ gives a bijection

Π : S2 → Ĉ.
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3.3 Meromorphic functions

Conversely given z ∈ C one checks

Π−1(z) =

(
2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
∈ S2 \ {N}.

Π is called a stereographic projection.

Figure 3.2: Riemann sphere. 4

Definition 3.3.10: Isolated singularity at ∞

For a function f which is analytic for |z| > 1/R for some R > 0, we say f

has an isolated singularity at infinity (which will be called removable, pole,

or essential) if g(z) := f(1/z) has an isolated singularity at z = 0 (removable,

pole, essential respectively).

A meromorphic function in the complex plane that is either holomorphic

at infinity (i.e. f is holomorphic at 0) or has a pole at infinity is called

meromorphic in Ĉ.

We will use the following notation D∗
R(∞) :=

{
z ∈ C

∣∣|z| > 1
R

}
, D∗

r(∞) ⊂ D∗
s(∞)

when R < S.

Example 3.3.11

1. An entire function is analytic in D∗
R(∞) for every R > 0 for any R > 0. For

example f(z) = ez is holomorphic in C but has an essential singularity at ∞
since f(1/z) = e1/z has an essential singularity at 0.

2. p(z) ∈ C[z] has a pole at ∞ since

p(1/z) =
an
zn

+ · · ·+ a0.

3. f(z) = tan(z) does not have an isolated singularity at infinity because f(z)

4This figure was created by Joshua Dreier. His personal lecture notes and more brilliant diagrams
you will find under his personal webpage [1].
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3 Meromorphic Functions and the Logarithm

has a pole at z = π/2 + kπ, hence

g(z) = f(1/z) = tan(1/z)

has singularities at S = {(π/2 + kπ)−1 : k ∈ Z} accumulate at 0. The

singularity of tan(1/z) at z = 0 is not isolated.

Theorem 3.3.12:

If f : Ĉ→ Ĉ meromorphic, then f is a rational function:

f(z) =
P (z)

Q(z)
,

where P,Q ∈ C[z].
Hence

M(Ĉ) =
{
P (z)

Q(z)

∣∣∣∣P (z), Q(z) ∈ C[z]
}
.

3.4 Applications of the Residue Theorem

Our goal is to show the argument principle 3.4.2, which allows us to count the

number of zeros and poles of a given function f ∈M(Ω) inside a closed curve.

Lemma 3.4.1: f ′/f

Let Ω ⊂ C an open and connected set, f ∈ M(Ω), f ̸≡ 0. Then f ′/f , called

the logarithmic derivative of f , is also meromorphic in Ω. Moreover, f ′/f

has poles of order 1 at z0 ∈ Ω for which ord fz0 ̸= 0,i.e. z0 is either a zero or

a pole of f . Then resz0 f
′/f = ordz0 f .

Lecture 20

Proof. By assumption the zeros of f do not have limit points, hence 1/f ∈ M(Ω).

Clearly f ′ ∈M(Ω \Sf ), where Sf is the set of poles. If z0 ∈ Sf is a pole of order n,

then we can write f as

f(z) = (z − z0)
−ng(z)

for all z ∈ D∗
r(z0), where g ∈ H(Dr(z0)) and g(z0) ̸= 0. Taking the derivative we
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get

f ′(z) =
−n

(z − z0)n+1
g(z) +

1

(z − z0)n
g′(z)

=
1

(z − z0)n+1

(
(z − z0)g

′(z)− ng(z)
)︸ ︷︷ ︸

:=h(z)

where h ∈ H(Dr(z0)) and h(z0) = −ng(z0) ̸= 0. Hence f ′(z)/f(z) has a pole of

order 1 at z0. Similarly, if z0 is a zero of f of order n, then f ′ has a zero of order

n− 1 at z0, this gives

ordz0 f
′/f = ordz0 f

′ − ordz0 f =


−(n+ 1)− (−n) = −1 z0 is a pole

(n− 1)− n = −1 z0 is a zero

≥ 0 otherwise.

Next, we want to compute the residue at zeros/poles. If z0 is a zero, so that

f(z) = (z − z0)
ng(z), then

f ′

f
=

n(z − z0)
n−1g(z) + (z − z0)

ng′(z)

(z − z0)ng(z)

=
n

z − z0
+

g′(z)

g(z)

That shows that resz0 f
′/f = n = ordz0 f . The calculation is similar in the case

when z0 is a pole of f .

Theorem 3.4.2: Argument Principle

Let Ω ⊂ C be open and connected, f ∈M(Ω) with f ̸≡ 0, and let γ be a circle

(or any closed path so that the Theorem 3.2.1 (Residue Formula) applies). If

f has no zeros or poles on γ, then

1

2πi

∮
γ

f ′

f
dz =

∑
z0∈Zf∩ int(γ)

ordz0 f+
∑

z0∈Sf∩ int(γ)

ordz0 f =
∑

z∈ int(γ)
ordz f ̸=0

ordz f = Z−P.

Where Z = zero set of f , Sf = poles of f , and int(γ) denotes the interior

enclosed by γ. Also Z = number of zeroes and P = number of poles (counted

with multiplicity and order) of f inside γ.
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Proof. This follows from Lemma 3.4.1 and resz0(f/f
′) = ordz0 f

1

2πi

∫
γ

f ′

f
dz =

∑
zi∈intγ

reszi

(
f ′

f

)
= Z − P

where Z = number of zeroes of f inside γ counted with multiplicity and P = number

of poles of f inside γ counted with multiplicity.

Remark. The contour integral ∮
γ

f ′(z)

f(z)
dz

can be interpreted as 2πi times the winding number of the path f(γ) around the

origin.

Theorem 3.4.3: Rouché’s Theorem

Suppose f, g holomorphic in an open set Ω which contains a circle C and its

interior. If |f(z)| > |g(z)| for all z ∈ C, then f and f + g have the same

number of zeros inside C.

Proof. Let t ∈ [0, 1] and define ft(z) := f(z)+tg(z), so that f0(z) = f and f1 = f+g.

We have that

|ft(z)| = |f(z) + tg(z)| ≥ ||f(z)| − t|g(z)|| .

For z ∈ C we have |f | > |g|, hence |ft(z)| > (1 − t)|g(z)| ≥ 0, hence |ft(z)| > 0 for

z ∈ C. Applying the argument principle 3.4.2 to ft gives

nt =
1

2πi

∫
C

f ′
t(z)

ft(z)
dz,

where nt is the number of zeros of ft in C. Since ft is continuous in both t and z, nt

is a continuous function of t.5 Since nt is an integer-valued function and continuous,

it must be constant. In particular n0 is the number of zeroes of f and n1 is the

number of zeroes of f + g and they are equal.

Example 3.4.4

Let p(z) = z6+8z4+z3+2z+3 and let’s prove that the numbers of zeros of p(z) inside

|z| = 1 is 4. In this case choose f(z) = 8z4 (big on C) and g(z) = z6 + z5 + 2z + 3

(small on C). For |z| = 1, we have 7 = |z6 + z3 + 2z + 3| ≤ |8z4| = 8 by Rouché,

5Recall from real analysis; f : [a, b] × [c, d] → R continuous on [a, b] × [c, d] then h(t) :=∫ d

c
f(t, x)dx is continuos on [a, b].
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f, f+g = p(z) has the same number of zeroes inside |z| = 1, since f has four zeroes,

so does P (z).

Example 3.4.5

One can give a “nice” proof of the Fundamental Theorem of Algebra using Rouché’s

Theorem 3.4.3. Let p(z) = zn+an−1z
n−1+ · · ·+a0. For |z| large |zn| dominates the

rest. If |z| = R, with R large enough f(z) = zn, f(z) = anz
n−1 + · · · + a0 satisfies

|f(z)| > |g(z)| on |z| = R. Hence f, f + g = p has the same number of zeroes inside

|z| = R. Since f has n zeros, so does f + g = p. Quod erat demonstrandum.
Lecture 21

Theorem 3.4.6: Open Mapping Theorem

Let Ω be an open and connected set in C and f ∈ H(Ω) a non-constant

function, then f is open.

Proof. Let z0 ⊂ U ⊂ Ω, where U is an open set, and let w0 := f(z0). We want to

show that a neighbourhood of w0 is also contained in f(U), i.e., if w is near w0, then

there exists z ∈ U such that w = f(z). Let r > 0 such that Dr(z0) ⊂ U and such

that f(z) − w0 ̸= 0 in D∗
r(z0) (we can do this since zeros of holomorphic functions

are isolated). In particular f(z) − w0 ̸= 0 on Cr(z0). Cr(z0) is compact, hence we

can find δ > 0 such that |f(z) − w0| ≥ δ for all z ∈ Cr(z0). Let w ∈ C such that

|w − w0| < δ, i.e. w ∈ Dδ(w0). Define

F (z) := f(z)− w = (f(z)− w0) + (w0 − w).

We want to show that F (z) has a zero inside the circle Cr(z0), because this would

mean that there exists z ∈ Dr(z0) such that f(z) = w. We can now apply Rouché’s

Theorem 3.4.3 with f̃ := f(z) − w0 and g̃ = w0 − w. On the circle Cr(z0) we have

|f̃ | ≥ δ and |g̃| < δ. Hence by Rouché’s theorem 3.4.3, f̃ and f̃ + g̃ = F has the

same number of zeroes inside Cr(z0). In particular since f̃ has a zero, namely z0,

inside Cr(z0), so does F .

Remark. This theorem says for example that if f is a holomorphic function, then

the image of a disc D under f cannot be completely contained in R, since any subset

of R is not open in C.
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Theorem 3.4.7: Maximum Modulus Principle

Let Ω ⊂ C be an open and connected set, and let f ∈ H(Ω) be a non-constant

function. Then there is no z0 ∈ Ω such that

|f(z)| ≤ |f(z0)|

for all z ∈ Ω, i.e. |f | cannot attain a maximum in Ω. In particular if Ω is

bounded and f is continuous on Ω, then

max
z∈Ω
|f(z)| = max

z∈Ω\Ω
|f(z)|.

Proof. Suppose f ∈ H(Ω), non-constant and suppose f attains a maximum at z0 ∈
Ω. By Theorem 3.4.6 (Open Mapping Theorem) f is an open map, hence if D =

Dr(z0) ⊂ Ω then f(D) is open. Hence f(D) contains a disc around f(z0). But this

means there are points z ∈ D such that |f(z0)| ≤ |f(z)| which contradicts that f

attains its maximum at z0.

Remark. The assumption about Ω being bounded is important. For example

consider

Ω :=

{
z ∈ C

∣∣∣∣− π

2
< Im z <

π

2

}
is open and connected, but its closure is not bounded. Let f(z) = exp(ez), then

f |∂Ω = exp
(
ex±iπ/2

)
= exp(±iex). So on the boundary∣∣∣∣f |∂Ω∣∣∣∣ = 1,

but on the interior of Ω, f(x) = exp(ex)→∞ as x→∞.

3.5 Homotopy and simply connected domains

The key idea to understand the homotopy version of Cauchy’s Theorem 3.5.3 is the

following: If f : Ω → C holomorphic and if we can deform γ1 ⊂ Ω into another

curve γ2 (both γ1, γ2 are either closed or have the same endpoints) continuously

while staying in Ω, then ∫
γ1

fdz =

∫
γ2

fdz.
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Definition 3.5.1: Homotopy

Let Ω ⊂ C be open and γ0 : [a, b]→ C and γ1 : [a, b]→ Ω be two curves such

that γ0(a) = γ1(a) and γ0(b) = γ1(b). We say that γ0 is homotopic to γ1 in

Ω with fixed endpoints if there exists H : [a, b]× [0, 1]→ Ω, (t, s) 7→ H(t, s)

continuous, such that

1. H(t, 0) = γ0(t) and H(t, 1) = γ1(t) for all t ∈ [a, b].

2. H(t, s) =: γs(t) is continuous for all s ∈ [0, 1] and t ∈ [a, b], and

H(a, s) = γ0(a) = γ1(a), H(b, s) = γ1(b) = γ1(b), i.e. γs has the

same endpoints as γ0 and γ1.

Similarly, if γ0 and γ1 are closed curves, we say γ0 is homotopic to γ1 in Ω

is there exists H : [a, b]× [0, 1]→ Ω such that

1. H(t, 0) = γ0(t) and H(t, 1) = γ1(t) for all t ∈ [a, b].

2. γs = H(t, s) is a continuous curve and H(a, s) = H(b, s) for all s ∈ [0, 1].

γ0

γ1

A BH(t, s)

Figure 3.3: Homotopic curves γ0 and γ1 with fixed endpoints

γ0 γ1
P

H(t, s)

Figure 3.4: Closed homotopic paths γ0 and γ1

Example 3.5.2

1. Let Ω = C and γ1, γ2 be two closed curves. Then they are homotopic in C.
In fact there are homotopic to the constant curve σ : [a, b] → C, t 7→ c ∈ C.
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3 Meromorphic Functions and the Logarithm

We can define a homotopy between the two paths as

H : [a, b]× [0, 1] −→ C

(t, s) 7−→ (1− s)γ0(t) + sγ1(t).

H is continuous, being a combination of continuous functions, satisfying

H(t, 0) = γ0(t)

H(t, 1) = γ1(t)

H(a, s) = (1− s)γ0(a) + sγ1(a)

H(b, s) = (1− s)γ0(b) + sγ1(b).

Since γ0(a) = γ0(b) and γ1(a) = γ1(b), we have H(a, s) = H(b, s) for all

s ∈ [0, 1]. Note here we defined the line segment between γ0(t) and γ1(t) as

our homotopy. The same works for any domain in C which is convex.

2. Take Ω = C \ {0}. Let

γ0(t) : [0, π] −→ Ω

t 7−→ eit

and

γ1(t) : [0, π] −→ Ω

t 7−→ e−it.

We will see that they are not homotopic once we see the homotopy version of

Cauchy’s theorem.

3. Take Ω = C \ (−∞, 0], then Ω is not convex, but we can still deform a closed

curve γ0 to γ1 as follows: choose a point on R+, say 1, and the constant curve

σ : [a, b]→ Ω, t 7→ 1. We can deform γ0 to 1, and 1 to γ1. Explictly,

H(s, t) =

1 + (1− 2s)(γ0(t)− 1) 0 ≤ s ≤ 1
2

1 + (2s− 1)(γ1(t)− 1) 1
2 < s ≤ 1.

Remark. If γ0 is homotopic to γ1 in Ω we write γ0 ∼Ω γ1. If Ω is fixed we just

write γ0 ∼ γ1. Note that ∼ is an equivalence relation.
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Theorem 3.5.3: Homotopy Theorem

Let Ω ⊂ C be an open set and γ0, γ1 two curves in Ω such that either (i) γ0

and γ1 are both closed and homotopic, or (ii) γ0 is homotopic to γ1 with fixed

endpoints. Then for f ∈ H(Ω),∫
γ0

fdz =

∫
γ1

fdz.

Proof. We will give proofs for different versions of the theorem. We will begin with

a simpler version under more assumptions.

Simpler version

If we also assume that H(t, s) has continuous second partial derivatives, then by

Schwarz’s Theorem
∂2H

∂s∂t
=

∂2H

∂t∂s

for all (t, s) ∈ [a, b]× [0, 1]. Recall from analysis that for

h : [a, b]× [0, 1] −→ R

(t, s) 7−→ h(t, s),

if ∂h/∂s exists and is continuous, and we define

G : [0, 1] −→ R

s 7−→ G(s) =

∫ b

a
h(t, s)dt,

then G is differentiable and

G′(s) =

∫ b

a

∂h

∂s
(t, s)dt.

We will apply this to the real and imaginary parts of the following integral. Define

I(s) :=

∫ b

a
f(H(s, t))

∂H

∂t
(t, s)︸ ︷︷ ︸

h(t,s)

dt

=

∫ b

a
f(γs(t))γ

′
s(t)dt.
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We have that

I(0) =

∫
γ0

fdz

and

I(1) =

∫
γ1

fdz.

We want to prove I(0) = I(1) and we will do this by showing that I is constant.

Taking the derivative we get

I ′(s) =

∫ b

a

∂

∂s

(
f(H(t, s))

∂H

∂t
(t, s)

)
dt

=

∫ b

a

∂

∂s

(
(f ◦H)

∂H

∂t

)
dt.

Using chain rule we have

I ′(s) =

∫ b

a

[
f ′(H(t, s))

∂H

∂s
(t, s)

∂H

∂t
(t, s) + f(H(t, s))

∂2H

∂s∂t
(t, s)

]
dt.

Notice that the part inside [. . .] is equal to

∂

∂t

(
f(H(t, s))

∂

∂s
H(t, s)

)
.

Hence we have

I ′(s) =

∫ b

a

∂

∂t

(
f(H(t, s))

∂H

∂s
(t, s)

)
dt

= f(H(t, s))
∂H

∂s
(t, s)

∣∣∣∣t=b

t=a

= f(H(t, s))
∂H

∂s
(b, s)− f(H(t, s))

∂H

∂s
(a, s)

= 0.

Lecture 22

Full version

We now prove the theorem with no extra assumptions. We will use the following

two facts:

1. If K = H([a, b]× [0, 1]), then K is compact. This allows us to use the following

lemma.

Lemma. If K is compact, then there exists ε > 0 such that for all z ∈ K, the

disc Dε(z) is contained in Ω.
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D0

D1

D2

D3

D4

z0 = w0

z1

z2

z3
z4

z5 = w5

w1

w2

w3

w4

Figure 3.5: Two curves, γn/N and γ(n−1)/N , covered by discs

Proof of lemma. Assume that such an ε does not exist. Then for all n ≥ 1

there exists zn ∈ K such that D1/n(zn) is not contained in Ω, i.e. there

exists wn ∈ C − Ω such that |zn − wn| < 1/n. (zn)
∞
n=0 is a sequence in K

and since K is compact, there exists a convergent subsequence (znk
)∞k=0 with

limk→∞ znk
= z ∈ K due to the closedness of K. Since |wn − zn| < 1/n, we

also have |wnk
− znk

| < 1/nk, hence wnk
→ z as well. But wnk

∈ C \Ω, which
is also a closed set, this means that z ∈ C \ Ω, which is a contradiction.

2. H is continuous on the compact set [a, b] × [0, 1] implies that H is uniformly

continuous. Now we divide [a, b]× [0, 1] into N×N small rectangles, each with

size 1/N × (b− a)/N , we consider the image of the rectangle with vertices at

xm,n, xm−1,n, xm,n−1, and xm+1,n+1 (we write xm,n for (tm, sn)). Due to

uniform continuity, there exists N > 0 such that

|H(t, s)−H(tm, sn)| < ε

whenever |(t, s)− (tm, sn)| < 2/N . Since the diameter of Qmn = [tm, tm+1]×
[sn, sn+1] is

√
2/N , we can use the above remark to get H(Qmn) ⊂ Dε(zmn),

where zmn = H(xm,n).

We use induction on n, 0 ≤ n ≤ N to show that∫
γn/N

f(z)dz =

∫
γ0

f(z)dz.
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If n = 0 it is clear. Assume for n ≥ 1 that∫
γ(n−1)/N

fdz =

∫
γ0

fdz,

then it is enough to show that∫
γ(n−1)/N

fdz =

∫
γn/N

fdz.

For each 0 ≤ m ≤ N , let γ
(m)
(n−1)/N = γn−1/N

∣∣
[tm,tm+1]

. Let σm be the line segment

between zm,n−1 and zm,n and analogously for σm+1. Now we apply Cauchy’s The-

orem in the disc Dε(zm,n−1), which we have chosen to be contained in Ω and to

contain the segments γ
(m)
(n−1)/N and γ

(m)
(n−1)/N .

∫
γ
(m)
n/N

f(z)dz −
∫
σm+1

f(z)dz −
∫
γ
(m)
(n−1)/N

f(z)dz +

∫
σm

f(z)dz = 0.

Summing over m gives

∫
γ(n−1)/N

f(z)dz =
N−1∑
m=0

∫
γ
(m)
(n−1)/N

f(z)dz

=

N−1∑
m=0

∫
γ
(m)
n/N

f(z)dz +

N−1∑
m=0

(∫
σm

f(z)dz −
∫
σm+1

f(z)dz

)

=

∫
γn/N

f(z)dz +

∫
σ0

f(z)dz −
∫
σN

f(z)dz.

Now if we have two homotopic curves with fixed endpoints, then σ0 and σN are

trivial and both integrals vanish. If we have two closed curves, then σ0 = σN because

γ(n−1)/N (a) = γ(n−1)/N (b) and γn/N (a) = γn/N (b). This concludes the proof.

Example 3.5.4

In Example 3.5.2 (2), γ0 ̸∼ γ1 in Ω, because if they were homotopic, then that

would say for f(z) = 1/z ∈ H(Ω),∫
γ0

fdz =

∫
γ1

fdz,

which implies ∫
γ0−γ1

1

z
dz = 0,

but we know the integral is 2πi.
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Lecture 23

3.6 The complex logarithm

Definition 3.6.1: Simply Connected

An open set Ω ⊂ C is called simply connected if it is connected and if every

2 curves with the same endpoints are homotopic.

Theorem 3.6.2: Simply connected and primitive

Any holomorphic function on a simply connected domain has a primitive. In

particular, ∫
γ
fdz = 0

for every closed curve. Any 2 primitives differ by a constant.

Proof. Fix z0 ∈ Ω. For z ∈ Ω, since Ω is connected, there exists a curve γ connecting

z0 to z. Define

F (z) =

∫
γ
f(w)dw.

The function F is well defined since Ω is simply connected: if γ̃ is another curve

from z0 to z, then γ ∼ γ̃ and by Theorem 3.5.3 (Homotopy Theorem),∫
γ
f(w)dw =

∫
γ̃
f(w)dw.

Now we show that F is indeed the primitive of f . Choose h small so that the line

segment connecting z and z + h is contained in Ω. Then, by definition

F (z + h)− F (z) =

∫ z+h

z
f(w)dw.

Arguing as in the proof of Theorem 2.1 (this is the numbering in the book, not in

our notes), or using continuity of f as below we get

lim
h→0

F (z + h)− F (z)

h
= f(z).

This concludes the proof. In the following we elaborate on the argument using

continuity. By uniform continuity in a compact set (here [z, z + h] denotes the line
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segment from z to z + h),∣∣∣∣∣
∫
[z,z+h]

f(w)− f(z)dw

∣∣∣∣∣ ≤
(

sup
w∈[z,z+h]

|f(w)− f(z)|

)
h.

Hence ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ sup
w∈[z,z+h]

|f(w)− f(z)|.

But f is continuous. Hence supw∈[z,z+h] |f(w)− f(z)| → 0 as h→ 0.

For a given z ∈ C \ {0}, we want to define a logarithm as a complex number w such

that ew = z. If z = reiθ we can set log z = log r+ iθ. The problem with this is that

this is not single valued. For example if we choose z = 1, we have

e0 = 1

but also

e2πik = 1, k ∈ Z.

Definition 3.6.3: Branch of the logarithm

Let Ω ⊂ C be an open set. A branch of the logarithm, logΩ, on Ω is a

holomorphic function such that exp(logΩ(z)) = z.

Remark.

1. Since exp z ̸= 0 for all z ∈ C, logΩ function can exist only if 0 /∈ Ω.

2. Let Ω = C \ {0}. Even though

exp : C→ C \ {0}

is surjective, there is no holomorphic choice of logarithm in C \ {0}. If it

existed f ∈ H(C \ {0})
exp(f(z)) = z

differentiating we get

f ′(z) exp(f(z))︸ ︷︷ ︸
z

= 1 ∀ z ∈ Ω

where

f ′(z) =
1

z
∀ z ∈ C \ {0}.
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But then ∫
γ

1

z
dz

should be 0 for any closed curve in Ω because f is a primitive of 1/z, which is

not true.

3. If Ω is open and connected, and ℓ = logΩ : Ω→ C is a logarithm on Ω. If ℓ̃ is

also a logarithm on Ω then ℓ̃− ℓ = 2πin for n ∈ Z. That is because

exp(ℓ(z)) = z, exp
(
ℓ̃(z)

)
= z

which implies

exp
(
ℓ(z)− ℓ̃(z)

)
= 1 =⇒ ℓ̃(z)− ℓ(z) ∈ 2πiZ for all z ∈ Ω

i.e. ℓ̃(z)−ℓ(z)
2πi is an integer valued continuous function on a connected set Ω.

Hence it is a single point n. Conversely if ℓ̃ = ℓ + 2πin then exp
(
ℓ̃(z)

)
=

exp(ℓ(z)) exp(2πin)) = exp(ℓ(z)) = z.

Theorem 3.6.4: Existence of branch of logarithm

Let Ω ⊂ C \ {0} be simply connected. Then there exists a branch of logarithm

on Ω, i.e.

F : Ω→ C

such that F is holomorphic and exp(F (z)) = z for all z ∈ Ω.

Proof. Since 0 /∈ Ω we have 1/z ∈ H(Ω). Since Ω is simply connected 1/z has a

primitive, call it f(z). Let

G(z) := z exp(−f(z)).

The derivative is

G′(z) = −f ′(z)z exp(−f(z)) + exp(−f(z)) = 0.

Since Ω is connected G(z) = a = ze−f(z) is a constant which is non zero since z ̸= 0

and exp ̸= 0. So there exists b such that a = exp(b). Let F (z) = f(z) + b. Then

exp(F (z)) = exp(f(z))︸ ︷︷ ︸
z/a

exp(b)︸ ︷︷ ︸
a

= z,
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i.e. F (z) is a branch of logarithm on Ω.

Definition 3.6.5: Principal branch of logarithm

Let Ω := C− := C \ {−∞, 0]. The principal branch of logarithm is the unique

logΩ ∈ H(Ω) such that log(1) = 0.

Remark. Sometimes the principal branch of logarithm is denoted by Log.

Proposition 3.6.6: Calculation of the logarithm

If z = reiθ ∈ C− with r > 0,−π < θ < π then the principal branch is given by

log z = log r + iθ.

Proof. Let

log z :=

∫
γz

dw

w

be a primitive of 1/z where we take the path γz which starts at 1 and ends at z.

Note that by definition log 1 = 0. If z = reiθ, r < 1, take the path γz which goes on

the real line from 1 to r, then on the circular arc to z. We have

log z = −
∫ 1

r

dx

x︸ ︷︷ ︸
on the x− axis

+

∫ −θ

0

−ire−iθ

re−it
dt︸ ︷︷ ︸

on the arc z=re−it, 0<t<θ

= log r + iθ.

Remark. r > 1 is similar and was an exercise.

Remark.

1. The identity

log z + logw = log(zw)

does not hold for all z, w, zw ∈ C−. If w = reiα, z = seiβ, zw = rseiθ and

−π < α, β, θ < π. Then there exists γ ∈ {−2π, 0, 2π} such that θ = α+β+ γ.

Then we have

logwz = log rs+ iθ = log r + log s+ i(α+ β + γ)

= (log r + iα) + (log s+ iβ) + iγ.

This implies logwz = logw + log z ⇔ γ = 0⇔ α+ β ∈ (−π, π).
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2. For the principal branch of log one has the Taylor expansion

log z =

∞∑
n=1

(−1)n−1(z − 1)n

n
, |z − 1| < 1.

Take the derivative of both sides then the left hand side has derivative (LHS)′ =

1/z and the right hand side

(RHS)′ =
∞∑
n=0

(1− z)n =
1

1− (1− z)
=

1

z
, |z − 1| < 1.

The right and left hand side differ by a constant. Choose z = 1 to see that

the constant is 0.

3. The image of the punctured circle {z ∈ C | |z| = r, −π < arg z < π} is the

vertical interval {w ∈ C | Re(w) = log |z|, −π < Im(w) < π}, as shown in

Figure 3.6

if r < 1 then Rew < 0,

if r > 1 then Rew > 0.

Re

Im

|z| = r

−r

−π < arg(z) < π

r Re

Im

log(r)

π

−π

Figure 3.6: The punctured circle {z ∈ C : |z| = r, −π < arg(z) < π}(left) and its
image under the principle branch of log (right)

4. The image of {z ∈ C | Arg z = θ}, a ray from 0 to ∞, is the horizontal line

{w ∈ C | Imw = θ}, as shown in Figure 3.7.

5. We can define a holomorphic branch of logarithm for any

Ω := C \ ({z | Arg z = α} ∪ {0}) .

95



3 Meromorphic Functions and the Logarithm

Figure 3.7: Image of {z ∈ C | Arg z = θ}

Definition 3.6.7: Power function

Let Ω ⊂ C \ {0} which is simply connected and logΩ : Ω → C a branch of

logarithm. Let α ∈ C, z ∈ Ω, we define

zα := exp(α logΩ(z)).

Note that this definition depends on the choice of logΩ. If we choose logΩ+2πik

instead, then

exp(α(logΩ z + 2πik)) = zαe2πikα.

In particular if we choose the principal branch with log 1 = 0 and α = 1/m then

z1/m = e1/m log z. We get

(
z1/m

)m
= exp

(
log z

m

)
· · · exp

(
log z

m

)
= exp

(m
m

log z
)
= z.

Theorem 3.6.8:

If f ∈ H(Ω), Ω simply connected, f(z) ̸= 0 for all z ∈ Ω. Then there exists a

holomorphic function g : Ω→ C, called logarithm of f such that eg(z) = f(z).

Proof. Exercise. Define g as a primitive of f ′/f .

Corollary 3.6.9:

If f ∈ H(Ω), non vanishing and Ω simply connected. Then f has a square

root in Ω, i.e. there exists h : Ω→ C holomorphic such that h2(z) = f(z).
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3.6 The complex logarithm

Proof. Take h = exp
(
1
2 log f

)
= exp

(
1
2g(z)

)
. Then h2 = exp g(z) = f(z).

Lecture 24

Definition 3.6.10: Winding number

Let z0 ∈ C and γ a closed curve in C, such that z0 /∈ γ. The winding

number of γ around z0 is

wγ(z0) = indγ(z0) =
1

2πi

∫
γ

dz

z − z0
.

Remark. Let γ(t) = z0 + reit, 0 ≤ t ≤ 2πn, then

1

2πi

∫
γ

dz

z − z0
= n.

If γ = z0 + reit, 0 ≤ t ≤ 2π and z1 ̸= z0, then

1

2πi

∫
γ

dz

z − z1
=

1 z1 ∈ int(γ)

0 z1 /∈ int(γ).

To get an intuition, let γ be a smooth curve γ : [0, 1]→ C, γ(0) = γ(1),∫
γ

dz

z − z0
=

∫ 1

0

γ′(t)dt

γ(t)− z0
.

This looks like log(γ(t)− z0)
∣∣t=1

t=0
= 0, which is wrong. We need to use the complex

logarithm: with the principle branch we get

log(γ(1)− z0)− log(γ(0)− z0)

= log |γ(1)− z0| − i arg(γ(1)− z0)− (log |γ(0)− z0|+ i arg(γ(0)− z0))

= i(arg(γ(1)− z0)− arg(γ(0)− z0)).

There is an ambiguity in defining the argument, but geometrically we can understand

it as the total change in argument as γ(t) moves around z0. In particular, since the

start and endpoints are the same, the difference in argument is a multiple of 2π.6

6The argument here is not completely rigorous, it is mainly to show the intuition behind the
definition and later we will prove the key properties of the winding number.
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3 Meromorphic Functions and the Logarithm

Proposition 3.6.11:

Let γ be a closed curve in C and Ω = C\ im(γ), which is open. Then the map

wγ : Ω→ C takes values in Z and is continuous. Hence it is constant on any

connected subset of Ω. Moreover, wr(z) = 0 if |z| is large enough.

Proof. Let γ : [a, b]→ C be a parametrisation of γ. Let

G(t) =

∫ t

a

γ′(s)ds

γ(s)− z
.

Note G(a) = 0 and G(b) = 2πiwγ(z). G(t) is continuous and except possibly for

finitely many points, it is differentiable, with

G′(t) =
γ′(t)

γ(t)− z
.

Let H(t) := (γ(t)− z)e−G(t), then

H ′(t) = γ′(t)e−G(t) − (γ(t)− z)G′(t)e−G(t)

= 0.

Hence H is constant: H(t) = (γ(t)−z)e−G(t) = c ∈ C, so γ(t)−z = ceG(t) for all t ∈
[a, b]. Moreover, we have c = ceG(a) = γ(a)− z, which implies γ(b)− z = ceG(b) = c

as well. This gives eG(b) = 1, so G(b) = 2πiwγ(z) ∈ 2πiZ.

If M := supt∈[a,b] |γ(t)|. Let |z| > M , then

|wγ(z)| =
∣∣∣∣ 1

2πi

∫
γ

dw

w − z

∣∣∣∣ ≤ 1

2π

length(γ)

|z| −M
,

since |w − z| ≥ ||w| − |z|| ≥ ||z| −M |. When |z| → ∞, LHS goes to 0, and in

particular, there exists R such that for |z| > R, |wγ(z)| < 1/2. Since wγ(z) is an

integer, this implies wγ(z) = 0 for z large enough.

Theorem 3.6.12: Residue Formula version 2

Let Ω ∈ C be simply connected and f ∈ M(Ω), V = Ω \ Sf , where Sf is the

set of poles. For a closed curve γ in V , we have∫
γ
fdz = 2πi

∑
z0∈Sf

wγ(z0) resz0 f.
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3.6 The complex logarithm

Proof. For any z0 ∈ Sf , let Pz0(z) be the principle part of f at z0,

Pz0(z) =

N(z0)∑
j=1

a−j(z0)

(z − z0)j
,

where N(z0) is the order of the pole.

Case 1. Sf is finite. Then

f̃ = f −
∑
z0∈Sf

Pz0

has removable singularities at z0 ∈ Sf and hence has a holomorphic extension. This

means the integral of f̃ along γ is 0 and hence∫
γ
fdz =

∑
z0∈Sf

∫
γ

a−1(z0)

z − z0
dz =

∑
z∈Sf

wγ(z0)a−1(z0).

Case 2. Sf is infinite. Pick R > 0 such that DR(0) contains γ and wγ(z) = 0

if |z| ≥ R. Then Sf ∩ DR(0) is finite because Sf is a discrete set. Similar to the

previous case, let

f̃ = f −
∑
z0∈Sf

|z0|<R

Pz0 ,

which is holomorphic in Ω ∩DR(0). Hence we have∫
γ
f̃dz = 0,

which implies ∫
γ
fdz =

∑
z0∈Sf

|z0|<R

∫
γ
Pz0(z)dz

= 2πi
∑
z0∈Sf

|z0|<R

(resz0 f)wγ(z0)

= 2πi
∑
z0∈Sf

(resz0 f)wγ(z0),

since wγ(z0) = 0 for any z0 ∈ Sf outside DR(0).
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Chapter 4

Conformal Mappings

Lecture 25

Motivation: We want to answer the following questions:

1. Given U, V ⊂ C, when does there exist a holomorphic function

f : U → V

that is a bijection? We will see that f−1 : V → U is automatically holomor-

phic.

2. When does there exist a holomorphic bijection between Ω ⊂ C and the unit

disk?

4.1 Conformal equivalence

Definition 4.1.1: Conformal map

Let U, V ⊂ C be open sets. An injective holomorphic map f : U → V is

called a conformal map. If f is bijective, then it is called a conformal

equivalence, and we say U and V are conformally equivalent. Other

terms used to describe conformal equivalences include biholomorphism and

holomorphic isomorphism.
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4.1 Conformal equivalence

Proposition 4.1.2: Holomorphicity of the inverse

If f : U → V is conformal (i.e. holomorphic and injective), then for all

z ∈ U, f ′(z) ̸= 0. The inverse of f defined on its image

f−1 : f(U)→ U

is also holomorphic.

Proof. Assume on the contrary that there exists z0 ∈ U such that f ′(z0) = 0. We

want to show that in this case f cannot be injective. Let h(z) = f(z) − f(z0),

then h(z0) = h′(z0) = 0. This implies that k := ordz0 h ≥ 2. If k = ∞, then

f(z) ≡ f(z0) = const, which is not possible due to injectivity. Hence k < ∞ and

there exists r > 0 such that for all z ∈ Dr(z0),

f(z)− f(z0) =
f (k)(z0)

k!
(z − z0)

k +G(z)(z − z0)
k+1

and
fk(z0)

k!
=: a ̸= 0.

Since the zeros of f ′ (which is holomorphic) are isolated, we can choose r > 0 such

that f ′(z) ̸= 0 in D∗
r(z0). Now we want to use Rouché’s Theorem 3.4.3 to show that

for some w ∈ C,
g(z) := f(z)− f(z0)− w

has the same number of zeroes as a(z− z0)
k−w in some disc around z0. To do this,

we write for z ∈ D∗
r(z0)

f(z)− f(z0)− w = a(z − z0)
k +G(z)(z − z0)

k+1 − w

=
(
a(z − z0)

k − w
)
+G(z)(z − z0)

k+1.

We apply Rouché 3.4.3 as follows: Let C = sup|z−z0|=r/2 |G(z)|. Pick 0 < s < r/2

with s < 1, and let

|w| < |a|
(s
2

)k
.

Then on the circle |z − z0| = s,

∣∣∣a(z − z0)
k − w

∣∣∣ ≥ (|a|sk − |a|∣∣∣s
2

∣∣∣k) ≥ |a|(s
2

)k
.
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4 Conformal Mappings

We also have that ∣∣∣G(z)(z − z0)
k+1
∣∣∣ ≤ Csk+1

on |z − z0| = s. So if we choose a(s/2)k > Csk+1, i.e. s < a/(c · 2k), then we can

apply Rouché 3.4.3 to conclude that g(z) = f(z)− f(z0)− w has the same number

of zeros in |z − z0| < s as a(z − z0)
k − w for |w| < |a|(s/2)k. Note that if w = reiθ,

then the zeros of a(z − z0)
w are at zn for n = 0, 1, . . . , k − 1, satisfying

zn − z0 =
∣∣∣w
a

∣∣∣1−k
ei(

θ+2nπ
k ).

But then |zn − z0| = |w/a|1/k < s/2 < s. Hence, all roots are inside Ds(z0), with

s < min{|a|/(C · 2k), r/2, 1} and |w| < |a|(s/2)k. Hence for a suitable choice of w, g

has the same number of zeros as a(z−z0)
k, namely k zeros. Let z1, z2, . . . , zk be the

zeros of g. If we choose w ̸= 0, which we can do, then these zeros are not equal to

z0, because if zk = z0, it implies 0 = g(zk) = f(z0)− f(z0)−w ̸= 0. Since f ′(z) ̸= 0

in D∗
r(z0), we have that g

′(z) = f ′(z) ̸= 0 for z ∈ D∗
r(z0). Hence each zero has order

1 and they are distinct. That means f(zℓ)− f(z0)− w = 0 for k distinct zℓ, which

contradicts injectivity. This proves that f ′(z) ̸= 0 for all z ∈ U .

Note that f : U → f(U) is bijective, so without loss of generality assume f(U) = V ,

which means f−1 : V → U is bijective and continuous, as f is an open map. Let

w0 ∈ V and w ∈ V be close to w0. Write w = f(z), w0 = f(z0). For w ̸= w0 we

have
f−1(w)− f−1(w0)

w − w0
=

z − z0
f(z)− f(z0)

=
1

f(z)−f(z0)
z−z0

.

Now we take the limit w → w0 to show that (f−1)′ exists.

Remark.

1. Proposition 4.1.2 says that if f : U → V is a conformal equivalence then f−1

is also a conformal equivalence.

2. Conformal equivalence is indeed an equivalence relation because

(a) U ∼C U as id : U → U is a conformal equivalence;

(b) if U ∼C V by f : U → V , then V ∼C U by f−1 : V → U ;

(c) if U ∼C V by f : U → V , V ∼C W by g : V → W , then U ∼C W by

g ◦ f : U →W .
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4.1 Conformal equivalence

Corollary 4.1.3:

If f : U → V is a conformal equivalence, then the map

T : H(V ) −→ H(U)

ϕ 7−→ ϕ ◦ f

is a linear isomorphism between two vector spaces.

Example 4.1.4

Consider half plane H := {z = x + iy ∈ C : y > 0} and the unit disc D := D1(0).

The map

f : H −→ D

z 7−→ z − i

z + i

is a conformal equivalence (a Möbius transformation), as shown in Figure 4.1, with

inverse

f−1(w) = i
1 + w

1− w
.

For any z ∈ H with z + i ̸= 0, so f is clearly holomorphic on H. The function

g = f−1 is also holomorphic. To see that g(w) ∈ H we calculate

g(w) =
i
(
1+w
1−w

)
− i
(
1+w
1−w

)
2i

=
1− |w|2

|1 + w|2
> 0.

One can check directly that f(g(w)) = w and g(f(w)) = z.

Example 4.1.5

Consider the map

f : U −→ H

z 7−→ z2,

where U = {z ∈ C : 0 < arg(z) < π/2}, then g(z) = f−1(w) = w1/2 =

exp(log(z)/2) (with log the principle branch). Note f is injective: if z21 = z22 , then

z1 = ±z2 and only one of them can be in U . To show surjectivity, let w := reiθ,
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4 Conformal Mappings

Re(z)

Im(z)

0

i

1 ∞

z-plane

Re(w)

Im(w)

−i

0

−1 1

w-plane

f

f−1

Figure 4.1: Conformal equivalence between H and D

0 < θ < π. Then z = r1/2eiθ/2 ∈ U satisfies z2 = w. In general the map z → zn

maps a sector S = {z ∈ C : 0 < arg(z) < π/n} to H conformally.

Example 4.1.6

Any horizontal strip of length 2π is conformally equivalent to a cut plane (split

plane). Someone make this diagram.

Example 4.1.7

An important non example: Let U = C, V = D, then there is no conformal

equivalence between C and D because otherwise f : C→ D would be a holomorphic

and bounded function. Hence by Liouville’s Theorem 2.4.6, it would be constant.

4.2 Riemann Mapping Theorem

Theorem 4.2.1: Riemann Mapping Theorem

Suppose Ω ⊊ C non-empty, simply connected. If z0 ∈ Ω, then there exists a

unique conformal equivalence F : Ω→ D such that F (z0) = 0 and F ′(z0) > 0.

Idea of proof:

1. Uniqueness: this boils down to finding all conformal automorphisms of the

unique disc. f1 : Ω → D, f2 :→ Ω → D two conformal equivalences, then

f2 ◦ f−1
1 : D→ D.

2. If Ω ̸= C we will show that there is a conformal map f : Ω→ D with f(z0) = 0.

Hence Ω is conformally equivalent to a subset of the unit disk D1(0).
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4.2 Riemann Mapping Theorem

3. Step 2 shows that the set F := {f : Ω→ D, f conformal, f(z0) = 0}. We will

see that s : supf∈F |f ′(z)| exists and there exists f ∈ F such that |f ′(z0)| is
maximal. This f has maximal expansion speed.

4. The function f found in step 3 is actually surjective. Lecture 26

Proof. Step 1. Automorphisms of D and uniqueness.

Theorem 4.2.2: Automorphisms of D

If f : D → D is an automorphism of D. Then there exists θ ∈ R and α ∈ D
such that

f(z) = eiθ
(

α− z

1− αz

)
.

Then f(0) = eiθα and f ′(0) = eiθ(|α|2 − 1). Conversely every map of this

form is an automorphism of D.

The next corollary will give the uniqueness in Riemann’s Theorem.

Corollary 4.2.3:

The map in Riemann’s Theorem is unique, i.e. fi : Ω → C, fi(z0) =

0, f ′
i(z0) > 0, i ∈ {1, 2}, then f1 = f2.

Proof of Corollary 4.2.3. Let g = f2 ◦ f−1
1 , then g : D→ D an automorphism of D.

Hence by Theorem 4.2.2,

g(z) = eiθ
(

α− z

1− αz

)
for some θ ∈ R and α ∈ D. Since fi(z0) = 0, g(0) = 0, which implies α = 0 and

g(z) = −eiθz for some z ∈ D.

g′(0) = −eiθ

= (f2 ◦ f−1
1 )′(0)

= f ′
2(f

−1
1 (0))(f−1

1 )′(0)

=
f ′
2(z0)

f ′
1(z0)

> 0

−eiθ > 0 implies that θ = π + 2πk, hence g(z) = z so we have f1 = f2.

Remark. If f(0) = 0, then f(0) = eiθα = 0 =⇒ α = 0. If α = 0 then

f(z) = −eiθz = eiθ̃z, i.e. f is a rotation.
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4 Conformal Mappings

To prove Theorem 4.2.2 we need another important lemma.

Lemma 4.2.4: Schwarz Lemma

Let f : D→ D holomorphic with f(0) = 0. Then the following holds:

1. |f(z)| ≤ |z| for all z ∈ D.
2. If for some z0 ̸= 0 with |f(z0)| = |z0|, then f is a rotation (i.e. there

exists θ ∈ R such that f(z) = eiθz).

3. |f ′(0)| ≤ 1. We have equality |f ′(0)| = 1 if and only if f is a rotation.

Proof of Lemma 4.2.4. We will use Maximum Modulus Principle 3.4.7.

1. Since f(0) = 0, ord0 f ≥ 1. Let

g(z) =
f(z)

z
∈ H(D).

Fix z ∈ D, choose 0 ≤ |z| < r < 1. For |w| = r, we have by Maximum Modulus

Principle 3.4.7,

|g(z)| ≤ max
|w|=r

|g(w)|.

We write

|g(z)| ≤ max
|w|=r

|g(z)| = 1

r
max
|w|=r

|f(w)|

≤ 1

r
,

since |f(w)| < 1 for all z ∈ D (f is an automorphism). The above is true for

any r, letting r → 1 we have |g(z)| ≤ 1, which means |f(z)| ≤ |z|.

2. Let g be as in the first part, so supz∈D1(0) |g(z)| ≤ 1. But if we have |f(z0)| =
|z0| for some z0 ̸= 0, z0 ∈ D1(0), then the maximum of g is attained inside the

disc. This will contradict the Maximum Modulus Principle 3.4.7 for g, unless

it is constant. This means that there exists c ∈ C so that

f(z)

z
= g(z) ≡ c,

hence f(z) = cz for all z ∈ D1(0). We also have |f(z0)| = |z0| for some z0,

this implies |c| = 1, so c = eiθ for some θ ∈ R, and f(z) = eiθz, a rotation.
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4.2 Riemann Mapping Theorem

3. We have

g(0) = lim
z→0

f(z)

z

= lim
z→0

f(z)− f(0)

z − 0

= f ′(0).

Hence |f ′(0)| = |g(0)| ≤ 1. If |f ′(0)| = 1 then again 0 is a local maximum of

g, which can not happen unless (by the Maximum Modulus principle 3.4.7) g

is a constant. As above this gives f is a rotation.

Proof of Theorem 4.2.2. Let

φα(z) :=
α− z

1− αz

for α ∈ C with |α| < 1.

Claim. φα(z) is an automorphism of D.

Proof of claim.

1. For |α| < 1 we have |1− αz| ≠ 0 for |z| < 1. Hence φα ∈ H(D).

2. If φα(z) = φα(w), then

α− z

1− αz
=

α− w

1− αw
⇐⇒ (1− |α|2)z = (1− |α|2)w ⇐⇒ z = w.

This shows φα is injective.

3. Finally we show φα(D) ⊆ D. If |z| = 1 then z = eiθ

φα(e
iθ) =

∣∣∣∣∣∣∣∣∣
:=w︷ ︸︸ ︷

α− eiθ

eiθ(e−iθ − α)

∣∣∣∣∣∣∣∣∣ =
∣∣∣e−iθ

∣∣∣∣∣∣w
w

∣∣∣ = 1.

By Maximum Modulus Principle 3.4.7, for z ∈ D, |φα(z)| < 1.

4. One sees that (φα ◦ φα)(z) = z, hence φ−1
α = φα.

This shows the claim. ■ Lecture 27

Now suppose f is an automorphism of D, there exists a unique α ∈ D such that

f(α) = 0. Now consider g = f ◦φα, then by definition g(0) = 0. By Schwarz Lemma
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4 Conformal Mappings

4.2.4 applied to g, we have |g(z)| ≤ |z| for all z ∈ D. Since g−1(0) = 0 and g−1 is

also an automorphism of D, we get that
∣∣g−1(w)

∣∣ ≤ |w| for all w ∈ D. Applying this

to w = g(z) we get that |z| ≤ |g(z)| which implies that |z| = |g(z)|, and from this it

follows that g is a rotation by Schwarz Lemma 4.2.4. Hence

g(z) = eiθz

for some θ ∈ R and by construction,

eiθz = (f ◦ φα)(z) = g(z).

Replace z by φα(z) we obtain

eiθφα(z) = (f ◦ φα)(φα(z)) = (f ◦
id︷ ︸︸ ︷

φα ◦ φα)(z)

= f(z)

This proves Theorem 4.2.2.

Remark. Combining automorphisms of D with the Cayley map

F : H −→ D

z 7−→ z − i

z + i

one can show the following.

Theorem. Every automorphism of H is of the form

g(z) =
az + b

cz + d
,

for

(
a b

c d

)
∈ GL2(Z), ad− bc > 0.

Proof. Read in the book.

Step 2. If Ω is a proper and simply connected subset of C, then Ω is

conformally equivalent to a subset of D.
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4.2 Riemann Mapping Theorem

Proposition 4.2.5:

Let Ω ⊊ C,Ω ̸= ∅, simply connected and open. Then there exists f : Ω→ D
such that f is conformal and 0 ∈ f(Ω), i.e. Ω is conformally equivalent to a

subset of D.

Proof. By assumption Ω is a proper subset, i.e. there exists α ∈ C such that α /∈ Ω.

By replacing Ω with Ω − α = {z − α : z ∈ Ω}, we may assume α = 0. Hence Ω ⊂
C\{0}. Then there exists logΩ : Ω→ C with logΩ ⊂ H(Ω), a holomorphic branch of

logarithm. Note logΩ is also injective since if logΩ z = logΩw, exponentiating gives

z = exp(logΩ z)

= exp(logΩw)

= w,

i.e. logΩ is conformal. Now let w ∈ Ω. Then note that for any z ∈ Ω, logΩ z ̸=
logΩw+2πi, since otherwise exponentiating gives z = w, but then logΩ z = logΩw.

In fact, logΩ(z) stays away from logΩw + 2πi in the sense that there exists δ > 0

such that D2δ(logΩw + 2πi) ∩ logΩ(Ω) = ∅. Assume not, then for every n > 0

we get a sequence (zn)
∞
n=0 ⊂ Ω such that |logΩ zn − (logΩw + 2πi)| < 1/n. Hence

logΩ zn → logΩw+2πi. Exponentiating gives zn → w and hence, using continuity of

the logarithm, logΩ zn → logΩw, which is a contradiction to logΩ zn → logw + 2πi.

In the sequel we omit Ω in logΩ, but we always refer to this branch of logarithm,

logΩ, defined on Ω. Now we consider the following map

F : Ω −→ C

z 7−→ 1

log z − (logw + 2πi)
.

Since log z ̸= logw + 2πi for any z ∈ Ω, F is holomorphic. Now F is also injective

since log z is injective, i.e. F is a conformal map. Since D2δ(logw+2πi)∩ log Ω = ∅
we have log z − (logw + 2πi) ≥ 2δ. Hence

|F (z)− 0| =
∣∣∣∣ 1

log z + (logw + 2πi)

∣∣∣∣ ≤ 1

2δ
<

1

δ
.

Hence F (Ω) ⊂ D1/δ(0). We can now translate and rescale to find the function we

are looking for, namely

f(z) :=
δ

4
(F (z)− F (w)).
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4 Conformal Mappings

Then f : Ω→ C is conformal, because F is conformal. We also have f(w) = 0 and

|f(z)| ≤ δ

4

(
1

δ
+

1

δ

)
≤ 1

2
,

which implies f(Ω) ⊂ D1(0).

Step 3. An extremal problem.

Define F := {F : Ω → D : F conformal, f(z0) = 0}. By Step 2, F ̸= ∅. We start

with the following lemma.

Lemma 4.2.6:

The set of values {|f ′(z0)| : f ∈ F} is bounded in [0,∞), that is,

supf∈F |f ′(z0)| = s <∞.

Proof. Let δ > 0, D2δ(z0) ⊂ Ω, f ∈ F . Cauchy Integral Formula for derivatives

2.4.4 gives

f ′(z0) =
1

2πi

∫
Cδ(z0)

f(z)

(z − z0)2
dz,

which implies

∣∣f ′(z0)
∣∣ ≤ 1

2πi
· 2πδ ·

maxz∈Cδ(z0) |f(z)|
δ2

≤ 1

δ
,

since |f(z)| < 1.

Proposition 4.2.7:

There exists f ∈ F such that |f ′(z0)| = s.

Step 4. Surjectivity of f from Proposition 4.2.7.

Proposition 4.2.8:

Let f ∈ F be such that |f ′(z0)| = s = sup
f∈F
|f ′(z0)|, then f is a conformal

equivalence, i.e. f is also onto D.

Proof. To show that f is surjective, we assume this is not the case and find g ∈ F ,
such that g′(z0) > |f ′(z0)|. To do this, we will use φα for some appropriate α,

and the squaring map. Since f is assumed to be not surjective, there exists α ∈ D

110



4.2 Riemann Mapping Theorem

such that f(z) ̸= α for all z ∈ Ω. Recall that φα(0) = α and φα(α) = 0. Then

φα ◦ f : Ω → D is conformal and 0 /∈ (φα ◦ f)(Ω). If 0 were in the image, then

(φα ◦ f)(z) = 0, which implies f(z) = α for some z. Since Ω is simply connected,

0 /∈ (φα ◦f)(Ω), a logarithm and thus the square root of φα ◦f exists. There exists a

holomorphic map f̃ : Ω→ C such that f̃2(z) = (φα ◦ f)(z), for all z ∈ Ω. Note f̃ is

injective, because if f̃(z) = f̃(w), then (φα ◦ f)(z) = (φα ◦ f)(w), this means z = w

as φα and f are both injective. We also notice that f̃(z0) ̸= 0 as φα(f(z0)) ̸= 0. Let

f̃(z0) = β and consider

φβ : D −→ D

z 7−→ β − z

1− βz
.

Let g : Ω→ D defined by g(z) = φβ ◦ f̃ , then g(z0) = 0.

Claim. |g′(z0)| > |f ′(z0)|.

Proof of claim. We first formally construct g : Ω → D as described above. We

already have the function φα ◦ f : Ω→ D→ D. Let h be the square root function,

h : (φα ◦ f)(Ω) −→ D

w 7−→ exp

(
1

2
logw

)
,

so h ◦φα ◦ f : Ω→ D. We set f̃ = h ◦φα ◦ f . Then we compose this with φβ to get

g : Ω→ D, where

g = φβ ◦ f̃

= φβ ◦ h ◦ φα ◦ f︸ ︷︷ ︸
f̃

,

and φ−1
β ◦ g = h ◦ φα ◦ f = f̃ . By construction

(φ−1
β ◦ g)

2 = φα ◦ f.

This implies

φ−1
α ◦ (φ−1

β ◦ g)
2 = f.
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4 Conformal Mappings

Let s(z) be the squaring map, so

f = φ−1
α ◦ s ◦ φ−1

β︸ ︷︷ ︸
Φ

◦g = Φ ◦ g.

Φ : D → D is holomorphic and not injective, because the squaring function is not.

We have that

Φ(0) = (φ−1
α ◦ s ◦ φ−1

β )(0)

= φ−1
α (β2),

since φ−1
β (0) = β. It holds that

β2 = (f̃(z0))
2 = (φα ◦ f)(z0)

since β = f̃(z0). Hence Φ(0) = (φ−1
α ◦ φα ◦ f)(z0) = f(z0) = 0.

Applying part 3 of Schwarz Lemma 4.2.4 we get |Φ′(0)| < 1. We note that |Φ′(0)| ≠
1, otherwise Φ would be a rotation and hence injective, but as said before Φ is not

injective. By construction f = Φ ◦ g. Applying the chain rule we get

|f ′(z0)| =
∣∣Φ′(g(z0))g

′(z0)
∣∣ = ∣∣Φ′(0)g′(z0)

∣∣ < |g′(z0)|.
■

Hence we can conclude.
Lecture 28

Proof of Proposition 4.2.7. Recall:

1. For a bounded set U ⊂ R there exists a non-decreasing sequence (an)
∞
n=0 ⊂ U

such that limn→∞ an = s = supU . Hence if fn ∈ F with |f ′
n(z0)| → s, we

want to show that fn → f ∈ F .

2. We have seen that a sequence of holomorphic functions that converge uniformly

on compact set has a limit which is also holomorphic. But we can not expect

that an arbitrary sequence of holomorphic functions fn is uniformly convergent

on compact set.

3. In a finite-dimensional vector space Rn, every bounded sequence has a conver-

gent subsequence.

We are looking for an analogue of this, which is provided by
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4.2 Riemann Mapping Theorem

Theorem 4.2.9: Montel’s Theorem

Let Ω ⊂ C be open, (fn)n ⊂ H(Ω). Suppose for all compact sets K ⊂ Ω there

exists Mk > 0 such that |fn(z)| < Mk for all n ≥ 1 and for all z ∈ K. Then

there exists a subsequence (fnk
) which converges uniformly on compacta.

Proof. No proof.

We apply this theorem in our case, since (fn) ⊂ F , fn : Ω → D, so |fn(z)| < 1 for

all n and for all z ∈ Ω. Hence by Montel’s Theorem 4.2.9 there exists (fnk
) ⊂ F

which converges uniformly on compact sets with limk→∞ fnk
= f , f holomorphic.

We still need f ∈ F , i.e. we want to show that f is injective and f(Ω) ⊂ D (we

already have f(z0) = 0 since fnk
(z0) = 0).

Proposition 4.2.10:

Let (fn) be a sequence in F and suppose fn → f for all z ∈ Ω uniformly on

compact sets. Then either f is constant or f ∈ F , limn→∞ f ′
n(z0) = f ′(z0).

Proof. First note fn → f uniformly on compact sets, hence f ∈ H(Ω) and f ′
n(z0)→

f ′(z0). We still need

1. f(Ω) ⊂ D,

2. f is either injective for constant.

For 1. note |fn(z)| ≤ 1, since fn : Ω → D. Hence |f(z)| = lim |fn(z)| ≤ 1. But

if for some z ∈ Ω, f(z) = 1, then f attains its maximum in a point inside D. By

maximum modulus principle, it is constant. This means that if f(z) is not constant,

then indeed f(Ω) ⊂ D.

To prove injectivity we use the following lemma.

Lemma 4.2.11:

Ω ⊂ C open, connected. fn : Ω → D conformal. If fn → f uniformly on

compacta, then f is either constant or injective.

Proof. Suppose f is not injective, we will show that f it constant. Let z1 ̸= z2 ∈ Ω

such that f(z1) = f(z2) and suppose f is not constant. Since zeros of non-constant

holomorphic functions are isolated, we can find a disc Dδ(z2) ⊂ Ω such that

f(z)− f(z2) ̸= 0
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4 Conformal Mappings

in z ∈ D∗
δ (z2). In particular for all z ∈ Cδ/2(z2), f(z)−f(z2) ̸= 0 and z1 /∈ Cδ/2(z2).

We apply argument principle 3.4.2.

1

2πi

∫
f ′(z)

f(z)− f(z1)
dz ≥ 1,

since z2 is a zero of f(z)−f(z1) in Dδ/2(z2). Moreover fn → f uniformly on compact

sets, in particular on Cδ/2(z2). Also, fn(z) ̸= fn(z1) for all z ∈ Cδ/2(z2) (fn’s are

injective and z1 /∈ Cδ/2(z2). Now consider

f ′
n(z)

fn(z)− fn(z1)
→ f ′(z)

f(z)− f(z1)
,

which converges uniformly on Cδ/2(z2). Hence∫
Cδ/2

f ′
n(z)

fn(z)− fn(z1)
→
∫
Cδ/2

f ′(z)

f(z)− f(z1)
.

However, the function on LHS is holomorphic, so the integral is always zero and

cannot converge to a non-zero value, thus we have a contradiction. This proves the

injectivity.

This concludes the proof of proposition 4.2.10

This shows Proposition 4.2.7 and completes Step 3.

This finally proves the Riemann Mapping Theorem.

Corollary 4.2.12:

Any two proper open subsets of C which are simply connected are conformally

equivalent.

4.3 Exam preparation

General suggestions:

1. For every definition, know an example and a counterexample.

2. For all theorems and formulas, have some examples in mind and know where

and how they are used.

3. Know the ideas of proofs of main theorems.
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