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Solutions to problem set 2

1. Recall that we may view singular 0-chains in X as finite formal sums ) n,z with z € X
and n, € Z. In particular, a zero-simplex in X is a point z € X.
By definition, the image of [z] € Hyo(X) under f, : Hy(X) — Ho(X) is the class of f(z) € X,
viewed as a 0-simplex. Since X is path-connected, we can choose a path « : [0,1] — X such
that v(0) = 2 and (1) = f(x); regarding this path as a 1-simplex v : A; — X, we obtain

Oy =~(1) =7(0) = f(z) — .
Hence the 0-chain f(z) — « is a boundary, and thus f.[z] — [z] = [f(z) — 2] = 0 € Ho(X).

2. Let v : I — X be a loop based at z(, and recall that we can also consider v as a singular
1-cycle; we denote the corresponding classes by [y] € m1(X, zo) and [v] € H1(X). It follows
straight from the definitions of f;, f. and the Hurewicz homomorphisms ¢x and ¢y that

f(ox (D)) = £] = [f o] = év (If 0 1]) = ¢y (f:[])-
Since this works for every «y, we conclude f. o ¢x = ¢y o f;.

3. Denote by ps : m1 (X, z9) = m1 (Y, y0) the map induced by p. Let v : I — X be a loop based
at o and suppose that py([7]) = 0 € m1(Y, o), which is equivalent to saying that the loop
po~y: I — Y is null-homotopic. This means that there exists a homotopy F : I x I — Y
such that F(-,0) = po~ and F(-,1) = yo is constant. Since ~ lifts F(-,0), the Covering
Homotopy Theorem tells us that there is a (unique) homotopy G : I x I — X such that
G(-,0) = v and such that po G = F'. In particular, this implies that p(G(-,1)) = F(-,1) is
constant, and thus that G(-,1) is constant, because p is a covering map and hence a local
homeomorphism. It follows that [y] = 0 € m; (X, x¢), and thus py is a monomorphism.

It is not true that p, : H;(X) — H1(Y) needs to be a monomorphism. For example, take any
space Y with H1(Y) # 0, set X =Y UY, and consider the obvious double cover p: X — Y7
the induced map p, : H1(X) = Hi(Y)® H1(Y) — H1(Y), (o, 8) — a + 3, is clearly not
injective.

For a slightly more involved example, consider X = S' v S'v St Y = S v S! and the
covering map p : X — Y indicated by the following picture (convince yourself that this is a
covering map!):

Consider now the loop v in X that starts at z¢p and then winds once around all of X in
clockwise direction. This loop defines a non-zero element [y] € H;(X); but note that

p[v] = ¢y (ps1]) = oy [b~"a"ba] = 0 € Hy(Y),



because [b~1a~1ba] lies in the commutator of 71 (Y, yg), which is the kernel of the Hurewicz
homomorphism ¢y . Thus p, : H1(X) — H;(Y) is not a monomorphism.

. We use the Seifert-Van Kampen and the Hurewicz Theorem.

Let U be the open set consisting of the interior of the polygon and let V' be a small open
neighbourhood of the boundary of the polygon. More precisely, if P denotes the polygon and
g: P — %, the projection coming from gluing the edges, then U = ¢(int(P) and V = ¢(V)
where N is a small neighbourhood of 9P in P.)
U is homeomorphic to a disc, hence m (U) = 0.

Consider the loop v = abjay byt ... agbgay byt = la1,b1] ... [ag,by], which comes from
following the boundary of the polygon in counter-clockwise direction. V' deformation retracts
to the image of ~, which is a bouquet of 2g many spheres. Therefore, 71 (V) is the free group
generated by a1,bq,...,a4,by.

U NV is homotopy equivalent to a sphere, hence m1 (U NV) = Z. Tts generator gets mapped
to 7y via the map (iy)g: m(UNV) — 71 (V) induced by the inclusion iy: UNV — V.

Seifert-Van Kampen (Theorem 9.4 in Bredon) now gives

m1(Bg) Z m1(U) 1, vy m1(V)
=m(U)/(7)
<a1,b1, .. .,ag,bgHal,bl] . [ag,bg]>.

1%

With the Hurewicz theorem we compute the first homology

Hy(Sg) = ((a1,b1,. . ag,by|[a1,b1] . .. [ag, bg] )™
gz@...@zgzw’

where the 2g factors are generated by ay,b1,...aq,bg.

. We first relate the fundamental groups of X VY, X and Y using Seifert-Van Kampen. Denote
by p € X VY the point where X and Y are glued, i.e. p = g(x) = ¢(y) for the projection
q: XUY - X VY. Wlog assume that A C X and B C Y are open. We sometimes view
A, X, B,Y as subsets of X VY via the obvious inclusions. The sets U := X UB C X VY
and V:= AUY C X VY are open in X VY. Moreover, U and V are both path-connected,
because A and B both deformation retract to {p}. We show that UNV = AUBC X VY
is simply connected: Let F': A x [0,1] — A be a strong deformation retraction to x and
G: B x [0,1] — B be a strong deformation retraction to y. Then the map

H:(AUB)x[0,1] - AUB
H(a,t) = F(a,t) forac A
H(b,t) = G(b,t) forbe B
is a (strong) deformation retraction from AU B to p. (Here it is crucial that F' and G are
strong deformation retractions: H only is well-defined, because for all ¢ € [0,1], F(p,t) =

p = G(p,t).) We conclude that AU B is homotopy equivalent to a point. In particular, it is
simply-connected.

So Seifert-Van Kampen (Corollary 9.5 in Bredon) applies to X VY = U UV and implies

m(X VY, p) =m(U,p)*m(V,p), (1)



where the isomorphism is induced by the inclusions.

As X resp. Y are deformation retracts of U resp. V, the inclusions X — U and Y < V are
homotopy equivalences. Hence, m1 (U, p) = m1(X,x) and 71 (V,p) = m1 (Y, y). Together with

(@), we get
(X VY,p) 2 m(X,x)xm (Y, z),
where the isomorphism is still induced by the inclusions.
The Hurewicz theorem now implies the claim:
H(XVY)2m (X VY,p)™
= (m(X,2) xm(Y,y)"

= (X, )" @& m (Y, )™
~ H\(X) ® H(Y)

The isomorphism Hy(X)®H;(Y) = H (X VY) in homology is still induced by the inclusions,
as can been shown similarly as in problem 2.



