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Solutions to problem set 4

1. Consider the commutative diagram

if*
(ev).

Ho(Y) — Ho(P).

Here P denotes the one-point space and (ex), is the homomorphism induced by the unique
map ex: X — P. Similarly for ey. It follows from a simple diagram chase that f, induces
a homomorphism

for Ho(X) = ker ((ex).) — ker ((ey).) = Ho(Y)
indeed if « € ker ((ex)+), then
(ev)«(fra) = ful(ex)wa) = f4(0) = 0.
2. Let 1 <14 # j <n. Consider the following rotations Ri’j in R"*: In the x;-z;-plane, Ri’j is

represented by the matrix
R _ cos(5t)  sin(Ft)
b \=sin(3t) cos(3t))

Ri’j fixes the other coordinates xy, k # ¢,j. Then Ri’j restrict to homeomorphisms on S™
and 7; = (R}?)~' o7j 0 R}?. Thus {(Ri’j)’l oTjo0 Ri’j}te[o | is a homotopy from 7; to 7;.

3. We show that f is continuous: Let V C Y be an open subset. If V' C Y is open, then
f7Y (V) = f~%(V) C X is open in X by continuity of f. Thus f~'(V) is open in X. If
0o € V, then oo € f~H(V) and X\ f~1(V) = f~1(Y\V). Note that Y\V C Y is compact.
Since f is a homeomorphism, f is proper and so ffl(f’\V) is compact. It follows that
f’l(V) is open in X. The same argument applied to f~! implies that ]T*\l is continuous.
Thus f is a homeomorphism with inverse f—\l

If we drop the assumption that f is a homeomorphism, then f doesn’t necessarily extend
to a continous map f on the compactifications. Here is a counterexample: Consider the
inclusion ¢ of the 1—disk (i.e. the open unit interval) B;(0) into the 2—disk By(0) as an
equator. Then there is no continuous extension of ¢ to the compactifications: indeed the
subspace

v = (B:(0)\ Bi(0)) u{o<}

is open in B/Q-@ as By (0) is compact, while its inverse image i~ (V) = {oo} € m is not
open, as {oo} = B/lﬁ \ B1(0), but B;(0) is not compact.

One can show that a map extends continously to one-point compactifications if and only if
it is a proper map.



4. View S™ as the standard sphere in R" ™! with coordinates (xq,x1,...,%,). Define the stereo-
graphic projection 7: S™\{(1,0,...,0)} — R™ as follows:

A LTn
ﬂ(mo,xl,...,xn):( .. )

1—1’07 .’1—1'0

m(x) is the intersection of the unique line trough z and (1,0...,0) with the hyperplane
{zo = 0}. 7 is a homeomorphism with inverse
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It follows from Exercise 3 that = extends to a homeomorphism 7: S™ — R™ U {o0}.

5. View S%¢~1 as the unit sphere inside C*, with respect to the standard Euclidean metric on
Ck. For every point z € S?*~1, viewed as a k-tuple of complex numbers, consider the curve
7.1 (—€,€) — S?k~1 given by 7. (t) = e®2. Consider the vector field X on S?*~1 given by

X(2) = 72(0).

This is a smooth nonwhere vanishing vector field. In real coordinates it is given by
X(l'l,yl, vy Ty yk) - (7y1; Tiyeeey 7yk7mk)'

6. (a) Since f(x) # x, Vo € S™, the line segment (1 —¢)f(x) — ¢z, t € [0,1], does not pass
through 0. Therefore, if f has no fixed points,

(1-t)f(z) —tx

(1 —1)f(x) — tz|
is a well defined homotopy from f to the antipodal map —id which has degree deg(—id) =
(—=1)"*L. Thus deg f = (—1)"*1.

(b) Since deg f = 0 # (—1)"*! it must have a fixed point = € S™ by exercise 6.(a), i.e.
f(x) = 2. Similarly, since g := (—id) o f has degree deg g = deg(—id) - deg f = 0, there
is a fixed point y € S™ of g, i.e. g(y) = —f(y) = y. This means that f(y) = —y.

fi(x) =

7. See Example 2.32 on page 137 in Hatcher’s book, or the notes from the exercise class of the
15.11.2024.

8. (a) Recall from Exercise 4 in Problem set 3 that we have the following commutative diagram

Hpr (S™Y) 2 H,,(S™)

l(sf)* lf*

ﬁn+1(sn+1) — ﬁn(sn)

o~

|

o)

(i.e. Oy is natural). Therefore, if f, is multiplication by d = deg f, then (Sf). is also
multiplication by d and hence deg f = deg Sf.

(b) Given k € Z the map S* — S : z — 2* has degree k. Now assume that we have
constructed a map f : S™ — S™ of degree k, then (by exercise 8.(a)), the map Sf :
Sntl — §ntl has degree k as well. So the claim follows by induction.



9.

10.

11.

First, let n = 1 and denote I := [0,1]. Let g : I — R be a continuous map such that

g(0) = g(1) = 0 and ¢(1/2) = 2x. The map g induces a well defined continuous surjection

f:I/0I =8* — S': t— 9, By the path lifting property the map g is the unique lift of

[ to the universal cover R of S! starting at the point 0 € R. So f € pym1(R,0) C m1(S*, 1)
——

=0
is homotopic to a constant map (which is clearly not surjective and therefore has degree 0)
and hence deg f = 0. Here, p: R — S is the universal cover.

Using exercise 8.(a) we obtain, by repeatedly suspending the map f, a surjective map S™ —
S™ of degree 0.

For an alternative, more explicit, solution see example 2.31 in Hatcher’s book.

Let the group action be given by the homomorphism p : G — Homeo(S™). The degree of
a homoemorphism is always +1. Therefore the group action determines a degree function
d: G — {£1} given by d(g) := deg p(g). Furthermore d is a homomorhism:

d(hg) = deg p(hg) = deg(p(h) o p(g)) = deg p(h) - deg p(g) = d(h) - d(g).

If g € G is a non trivial element, then p(g) has no fixed points as the action is free and hence
(by exercise 6.(a)) we have d(g) = (—1)"*!. So, if n is even, the kernel of d is trivial which
implies that G is isomorphic to a subgroup of {+1} & Z,.

For n = 2 we have that SO(2) is homeomorphic to the circle S* which is path connected.
Proceeding by induction we assume that SO(n—1) is path connected. Given any A € SO(n)
it is enough to show that there is a path in SO(n) connecting A to the identity matrix I,,.
This means that we need to find a continuous path taking the standard basis eq, ..., e, to
their image Aey, ..., Ae,. Let A C R™ be a plane containig both e; and Ae;. By the path
connectedness of SO(2), we can continuously move e; to Ae; by a rotation R of the plane

A.

It remains to continuously move Res,..., Re, to Aes,..., Ae, while keeping Ae; fixed.
Notice that Ae; = Re; L Re; and Ae; L Ae; for each 2 < i < n since both R and A
preserve angles. Hence the required motion can take place in the hyperplane R*~! of vectors
orthogonal to Ae;, where it exists by the assumption that SO(n — 1) is path connected.

Concatenating the two motions gives a path in SO(n) from I,, to A and thus SO(n) is path
connected.

For the other groups, take a look at
https://www.jnu.ac.in/Faculty/vedgupta/matrix-gps-gupta-mishra.pdf
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