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Solutions to problem set 4

1. Consider the commutative diagram

H0(X)
(ϵX)∗ //

f∗

��

H0(P )

id

��
H0(Y )

(ϵY )∗ // H0(P ).

Here P denotes the one-point space and (ϵX)∗ is the homomorphism induced by the unique

map ϵX : X → P . Similarly for ϵY . It follows from a simple diagram chase that f∗ induces

a homomorphism

f∗ : H̃0(X) = ker ((ϵX)∗) → ker ((ϵY )∗) = H̃0(Y )

indeed if α ∈ ker ((ϵX)∗), then

(ϵY )∗(f∗α) = f∗((ϵX)∗α) = f∗(0) = 0.

2. Let 1 ≤ i ̸= j ≤ n. Consider the following rotations Ri,j
t in Rn+1: In the xi-xj-plane, R

i,j
t is

represented by the matrix

Ri,j
t =

(
cos(π2 t) sin(π2 t)

− sin(π2 t) cos(π2 t)

)
.

Ri,j
t fixes the other coordinates xk, k ̸= i, j. Then Ri,j

t restrict to homeomorphisms on Sn

and τi = (Ri,j
1 )−1 ◦ τj ◦Ri,j

1 . Thus
{
(Ri,j

t )−1 ◦ τj ◦Ri,j
t

}
t∈[0,1]

is a homotopy from τj to τi.

3. We show that f̂ is continuous: Let V ⊂ Ŷ be an open subset. If V ⊂ Y is open, then

f̂−1(V ) = f−1(V ) ⊂ X is open in X by continuity of f . Thus f̂−1(V ) is open in X̂. If

∞ ∈ V , then ∞ ∈ f̂−1(V ) and X̂\f̂−1(V ) = f−1(Ŷ \V ). Note that Ŷ \V ⊂ Y is compact.

Since f is a homeomorphism, f is proper and so f−1(Ŷ \V ) is compact. It follows that

f̂−1(V ) is open in X̂. The same argument applied to f−1 implies that f̂−1 is continuous.

Thus f̂ is a homeomorphism with inverse f̂−1.

If we drop the assumption that f is a homeomorphism, then f doesn’t necessarily extend

to a continous map f̂ on the compactifications. Here is a counterexample: Consider the

inclusion i of the 1−disk (i.e. the open unit interval) B1(0) into the 2−disk B2(0) as an

equator. Then there is no continuous extension of i to the compactifications: indeed the

subspace

V =
(
B̂2(0) \B1(0)

)
∪ {∞}

is open in B̂2(0) as B1(0) is compact, while its inverse image î−1(V ) = {∞} ∈ B̂1(0) is not

open, as {∞} = B̂1(0) \B1(0), but B1(0) is not compact.

One can show that a map extends continously to one-point compactifications if and only if

it is a proper map.
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4. View Sn as the standard sphere in Rn+1 with coordinates (x0, x1, . . . , xn). Define the stereo-

graphic projection π : Sn\{(1, 0, . . . , 0)} → Rn as follows:

π(x0, x1, . . . , xn) =

(
x1

1− x0
, . . . ,

xn

1− x0

)
.

π(x) is the intersection of the unique line trough x and (1, 0 . . . , 0) with the hyperplane

{x0 = 0}. π is a homeomorphism with inverse

π−1(y1, . . . , yn) =

(
||y||2 − 1

||y||2 + 1
,

2y1
||y||2 + 1

, . . . ,
2yn

||y||2 + 1

)
.

It follows from Exercise 3 that π extends to a homeomorphism π̂ : Sn → Rn ∪ {∞}.

5. View S2k−1 as the unit sphere inside Ck, with respect to the standard Euclidean metric on

Ck. For every point z ∈ S2k−1, viewed as a k-tuple of complex numbers, consider the curve

γz : (−ϵ, ϵ) → S2k−1 given by γz(t) = eitz. Consider the vector field X on S2k−1 given by

X(z) = γ̇z(0).

This is a smooth nonwhere vanishing vector field. In real coordinates it is given by

X(x1, y1, . . . , xk, yk) = (−y1, x1, . . . ,−yk, xk).

6. (a) Since f(x) ̸= x, ∀x ∈ Sn, the line segment (1 − t)f(x) − tx, t ∈ [0, 1], does not pass

through 0. Therefore, if f has no fixed points,

ft(x) :=
(1− t)f(x)− tx

|(1− t)f(x)− tx|

is a well defined homotopy from f to the antipodal map−id which has degree deg(−id) =

(−1)n+1. Thus deg f = (−1)n+1.

(b) Since deg f = 0 ̸= (−1)n+1 it must have a fixed point x ∈ Sn by exercise 6.(a), i.e.

f(x) = x. Similarly, since g := (−id) ◦ f has degree deg g = deg(−id) · deg f = 0, there

is a fixed point y ∈ Sn of g, i.e. g(y) = −f(y) = y. This means that f(y) = −y.

7. See Example 2.32 on page 137 in Hatcher’s book, or the notes from the exercise class of the

15.11.2024.

8. (a) Recall from Exercise 4 in Problem set 3 that we have the following commutative diagram

H̃n+1(S
n+1)

(Sf)∗
��

∂∗

∼=
// H̃n(S

n)

f∗
��

H̃n+1(S
n+1)

∂∗

∼=
// H̃n(S

n)

(i.e. ∂∗ is natural). Therefore, if f∗ is multiplication by d = deg f , then (Sf)∗ is also

multiplication by d and hence deg f = degSf .

(b) Given k ∈ Z the map S1 → S1 : z 7→ zk has degree k. Now assume that we have

constructed a map f : Sn → Sn of degree k, then (by exercise 8.(a)), the map Sf :

Sn+1 → Sn+1 has degree k as well. So the claim follows by induction.
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9. First, let n = 1 and denote I := [0, 1]. Let g : I → R be a continuous map such that

g(0) = g(1) = 0 and g(1/2) = 2π. The map g induces a well defined continuous surjection

f : I/∂I = S1 → S1 : t 7→ eig(t). By the path lifting property the map g is the unique lift of

f to the universal cover R of S1 starting at the point 0 ∈ R. So f ∈ p♯ π1(R, 0)︸ ︷︷ ︸
=0

⊂ π1(S
1, 1)

is homotopic to a constant map (which is clearly not surjective and therefore has degree 0)

and hence deg f = 0. Here, p : R → S1 is the universal cover.

Using exercise 8.(a) we obtain, by repeatedly suspending the map f , a surjective map Sn →
Sn of degree 0.

For an alternative, more explicit, solution see example 2.31 in Hatcher’s book.

10. Let the group action be given by the homomorphism ρ : G → Homeo(Sn). The degree of

a homoemorphism is always ±1. Therefore the group action determines a degree function

d : G → {±1} given by d(g) := deg ρ(g). Furthermore d is a homomorhism:

d(hg) = deg ρ(hg) = deg(ρ(h) ◦ ρ(g)) = deg ρ(h) · deg ρ(g) = d(h) · d(g).

If g ∈ G is a non trivial element, then ρ(g) has no fixed points as the action is free and hence

(by exercise 6.(a)) we have d(g) = (−1)n+1. So, if n is even, the kernel of d is trivial which

implies that G is isomorphic to a subgroup of {±1} ∼= Z2.

11. For n = 2 we have that SO(2) is homeomorphic to the circle S1 which is path connected.

Proceeding by induction we assume that SO(n−1) is path connected. Given any A ∈ SO(n)

it is enough to show that there is a path in SO(n) connecting A to the identity matrix In.

This means that we need to find a continuous path taking the standard basis e1, . . . , en to

their image Ae1, . . . , Aen. Let Λ ⊂ Rn be a plane containig both e1 and Ae1. By the path

connectedness of SO(2), we can continuously move e1 to Ae1 by a rotation R of the plane

Λ.

It remains to continuously move Re2, . . . , Ren to Ae2, . . . , Aen while keeping Ae1 fixed.

Notice that Ae1 = Re1 ⊥ Rei and Ae1 ⊥ Aei for each 2 ≤ i ≤ n since both R and A

preserve angles. Hence the required motion can take place in the hyperplane Rn−1 of vectors

orthogonal to Ae1, where it exists by the assumption that SO(n− 1) is path connected.

Concatenating the two motions gives a path in SO(n) from In to A and thus SO(n) is path

connected.

For the other groups, take a look at

https://www.jnu.ac.in/Faculty/vedgupta/matrix-gps-gupta-mishra.pdf
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